ALABAMA

MINIMUM SPECIFICATIONS

FOR

SCHOOL BUSES

2000
INTRODUCTION

The following school bus specifications have been developed to enhance the safety of the vehicle which provides the safest ride available for the most precious cargo transported—our children.

A heartfelt thanks goes to each member of the Alabama State Department of Education School Bus Specifications Committee for all your hard work and dedication to our task. At our last meeting in Decatur we finalized specifications which began as a product of many individual thoughts and ideas. There was a pointed effort made to include committee members from all geographical areas of the state. The results, as you will see, produced specifications which meet the needs of all the students in the state of Alabama without compromising our first priority—safety. It was also our intent for the specifications to be user-friendly for the local school systems.

Again, we appreciate the effort and involvement of the members of the School Bus Specifications Committee. After reviewing these current specifications, if you have any question or suggestions, please feel free to contact any of the committee members listed on the following page.

Joe Lightsey, Administrator
Pupil Transportation

Bryan Nash, Chairman
Alabama State Department of Education
School Bus Specifications Committee
TABLE OF CONTENTS

SECTION I - GENERAL PROVISIONS ............................................................................. 1

SECTION II - SCHOOL BUS CHASSIS STANDARDS ......................................................... 2

Air Cleaner.................................................................................................................. 2
Axles.......................................................................................................................... 3
Brakes......................................................................................................................... 3
Bumper (Front)........................................................................................................... 4
Certification............................................................................................................... 5
Color............................................................................................................................ 5
Directional Lights....................................................................................................... 5
Drive Shaft............................................................................................................... 6
Electrical System....................................................................................................... 6
Engine......................................................................................................................... 7
Exhaust System......................................................................................................... 7
Fenders, Hoods, Types B & C Vehicles................................................................. 8
Frame.......................................................................................................................... 8
Fuel Tank................................................................................................................... 9
Governor................................................................................................................... 9
Heating System, Provision for............................................................................... 10
Horn............................................................................................................................ 10
Instruments & Instrument Panel........................................................................ 10
Oil Filter..................................................................................................................... 11
Openings................................................................................................................... 11
Passenger Load........................................................................................................ 11
Power and Gradeability......................................................................................... 12
Retarder System (Optional).................................................................................. 12
Shock Absorbers...................................................................................................... 12
Springs...................................................................................................................... 12
Steering Gear........................................................................................................... 12
Tires and Rims......................................................................................................... 13
Transmission........................................................................................................... 13
Turning Radius........................................................................................................ 13
Undercoating........................................................................................................... 13
Weight Distribution................................................................................................. 14
### SECTION III - SCHOOL BUS BODY STANDARDS

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Conditioning</td>
<td>14</td>
</tr>
<tr>
<td>Aisle</td>
<td>14</td>
</tr>
<tr>
<td>Back-up Warning Alarm</td>
<td>14</td>
</tr>
<tr>
<td>Battery/Batteries</td>
<td>14</td>
</tr>
<tr>
<td>Bumper (Front)</td>
<td>14</td>
</tr>
<tr>
<td>Bumper (Rear)</td>
<td>15</td>
</tr>
<tr>
<td>Bumper (Front) - Energy Absorbing (Optional)</td>
<td>15</td>
</tr>
<tr>
<td>Ceiling</td>
<td>16</td>
</tr>
<tr>
<td>Certification</td>
<td>16</td>
</tr>
<tr>
<td>Chains (Tire)</td>
<td>16</td>
</tr>
<tr>
<td>Color</td>
<td>16</td>
</tr>
<tr>
<td>Construction</td>
<td>16</td>
</tr>
<tr>
<td>Crossing Control Arm</td>
<td>17</td>
</tr>
<tr>
<td>Defrosters</td>
<td>17</td>
</tr>
<tr>
<td>Doors</td>
<td>18</td>
</tr>
<tr>
<td>Emergency Exits</td>
<td>18</td>
</tr>
<tr>
<td>Emergency Equipment</td>
<td>20</td>
</tr>
<tr>
<td>Fire Extinguishers</td>
<td>20</td>
</tr>
<tr>
<td>First-Aid Kit</td>
<td>20</td>
</tr>
<tr>
<td>Body Fluid Clean-up Kit</td>
<td>21</td>
</tr>
<tr>
<td>Warning Devices</td>
<td>21</td>
</tr>
<tr>
<td>Floor and Floor Coverings</td>
<td>21</td>
</tr>
<tr>
<td>Floor Plan</td>
<td>22</td>
</tr>
<tr>
<td>Heaters</td>
<td>22</td>
</tr>
<tr>
<td>Identification</td>
<td>23</td>
</tr>
<tr>
<td>Inside Height</td>
<td>23</td>
</tr>
<tr>
<td>Insulation</td>
<td>23</td>
</tr>
<tr>
<td>Interior</td>
<td>24</td>
</tr>
<tr>
<td>Lamps and Signals</td>
<td>25</td>
</tr>
<tr>
<td>Metal Treatment</td>
<td>26</td>
</tr>
<tr>
<td>Mirrors</td>
<td>26</td>
</tr>
<tr>
<td>Mounting</td>
<td>27</td>
</tr>
<tr>
<td>Overall Length</td>
<td>27</td>
</tr>
<tr>
<td>Overall Width</td>
<td>27</td>
</tr>
</tbody>
</table>
**SECTION III - SCHOOL BUS BODY STANDARDS (Continued)***

<table>
<thead>
<tr>
<th>Component</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Address</td>
<td>27</td>
</tr>
<tr>
<td>Reflective Material</td>
<td>27</td>
</tr>
<tr>
<td>Rub Rail</td>
<td>28</td>
</tr>
<tr>
<td>Seat Belt for Driver</td>
<td>29</td>
</tr>
<tr>
<td>Seat and Crash Barriers</td>
<td>29</td>
</tr>
<tr>
<td>Steering Wheel (See Chassis Standards)</td>
<td>30</td>
</tr>
<tr>
<td>Steps</td>
<td>30</td>
</tr>
<tr>
<td>Step Treads</td>
<td>30</td>
</tr>
<tr>
<td>Stirrup Step</td>
<td>31</td>
</tr>
<tr>
<td>Stop Arm Signal</td>
<td>31</td>
</tr>
<tr>
<td>Stop Arm Signal–Rear (Optional)</td>
<td>31</td>
</tr>
<tr>
<td>Storage Compartment</td>
<td>31</td>
</tr>
<tr>
<td>Sun Shield</td>
<td>32</td>
</tr>
<tr>
<td>Tail Pipe</td>
<td>32</td>
</tr>
<tr>
<td>Traction Assisting Devices</td>
<td>32</td>
</tr>
<tr>
<td>Trash Container and Holding Device</td>
<td>32</td>
</tr>
<tr>
<td>Undercoating</td>
<td>33</td>
</tr>
<tr>
<td>Ventilation</td>
<td>33</td>
</tr>
<tr>
<td>Wheel Housing</td>
<td>34</td>
</tr>
<tr>
<td>Windshield and Windows</td>
<td>34</td>
</tr>
<tr>
<td>Windshield Washers</td>
<td>34</td>
</tr>
<tr>
<td>Windshield Wipers</td>
<td>35</td>
</tr>
<tr>
<td>Wiring</td>
<td>35</td>
</tr>
</tbody>
</table>

**SECTION IV - SPECIAL NEEDS SCHOOL BUS STANDARDS**

<table>
<thead>
<tr>
<th>Component</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>37</td>
</tr>
<tr>
<td>General Requirements</td>
<td>37</td>
</tr>
<tr>
<td>Air Conditioning</td>
<td>38</td>
</tr>
<tr>
<td>Aisles</td>
<td>38</td>
</tr>
<tr>
<td>Communication</td>
<td>38</td>
</tr>
<tr>
<td>Crash Barrier</td>
<td>38</td>
</tr>
<tr>
<td>Glazing</td>
<td>38</td>
</tr>
<tr>
<td>Identification</td>
<td>38</td>
</tr>
<tr>
<td>Passenger Capacity Rating</td>
<td>39</td>
</tr>
</tbody>
</table>
### SECTION IV - SPECIAL NEEDS SCHOOL BUS STANDARDS

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Lift</td>
<td>39</td>
</tr>
<tr>
<td>Ramp</td>
<td>42</td>
</tr>
<tr>
<td>Regular Service Entrance</td>
<td>42</td>
</tr>
<tr>
<td>Restraining Devices</td>
<td>43</td>
</tr>
<tr>
<td>Seating Arrangements</td>
<td>43</td>
</tr>
<tr>
<td>Securement and Restraint System for Wheelchair/Mobility Aid and Occupant</td>
<td>43</td>
</tr>
<tr>
<td>Special Light</td>
<td>47</td>
</tr>
<tr>
<td>Special Service Entrance</td>
<td>47</td>
</tr>
<tr>
<td>Special Service Entrance Doors</td>
<td>48</td>
</tr>
<tr>
<td>Support Equipment and Accessories</td>
<td>49</td>
</tr>
</tbody>
</table>

### SECTION V - ALTERNATE FUEL SOURCE STANDARDS

| Section VI - Options

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lock Gas Compartment Door</td>
<td>50</td>
</tr>
<tr>
<td>Storage Compartment for Required Emergency Equipment</td>
<td>50</td>
</tr>
</tbody>
</table>

### SECTION VII - AIR CONDITIONING

<table>
<thead>
<tr>
<th>Section VII - Air Conditioning</th>
<th>51</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-30-Passenger—40,000 BTU/Hr. System</td>
<td>52</td>
</tr>
<tr>
<td>31-48-Passenger—53,000 BTU/Hr. System</td>
<td>53</td>
</tr>
<tr>
<td>49-60-Passenger—78,000 BTU/Hr. System</td>
<td>54</td>
</tr>
<tr>
<td>61-84-Passenger—108,000 BTU/Hr. System</td>
<td>55</td>
</tr>
</tbody>
</table>

### SECTION VIII - ALABAMA MINIMUM SPECIFICATIONS QUICK REFERENCE CHART

| Section VIII

<table>
<thead>
<tr>
<th>Topic</th>
<th>56</th>
</tr>
</thead>
</table>

### ALABAMA MINIMUM SPECIFICATIONS FOR SCHOOL BUSES

**EFFECTIVE OCTOBER 1, 1999**
SECTION I - GENERAL PROVISIONS

1. All school buses ordered by local education agencies beginning October 1, 1999, shall (1) meet the applicable Federal Motor Vehicle Safety Standards (FMVSS), and (2) meet Alabama minimum specifications for school buses. In the event of a conflict between the requirements of an applicable Federal Motor Vehicle Safety Standard, as referred to in this section, and the Alabama minimum specifications, the requirements of the FMVSS shall control. All school buses not meeting minimum specifications will not be certified by the Alabama State Department of Education (SDE).

2. All school bus manufacturers shall certify to the SDE, in the form of a certification plate mounted in the driver's compartment in the vehicle, that all school buses meet or exceed all standards as specified herein and are in compliance with the applicable FMVSS. All manufacturers shall certify to the State of Alabama and local education agencies that all components on school buses are new from bumper to bumper at time of delivery. All chassis and body information shall be mounted on a certification plate.

3. Used school buses purchased for use by a school system in Alabama shall meet all of the legal Federal and Alabama requirements for school buses that were in effect on the date the vehicle was manufactured.

4. In order to be in compliance with the State Bid Law, school bus purchases shall be by competitive bidding. Bid forms to the body manufacturer shall contain certain options required by the chassis manufacturer which may result in changes in normal Gross Vehicle Weight Rating (GVWR) or alterations to the body.

5. **Service Manual/Diagnostic Equipment**

Body and/or chassis suppliers, including integral (forward control) suppliers, shall provide each school district purchasing school buses with one complete set of the most current service manuals available to include both body and chassis at no additional cost upon delivery of bus. Diagnostic equipment (manuals, code books, software and training) shall be made available to local school systems at time of bid opening.

6. **New Technology**

New technology not in present specifications shall have prior written approval from the SDE School Bus Specifications Committee.

7. **School Bus Definitions**
**TYPE A:** The Type A school bus is a conversion or body constructed upon a van-type or cutaway front-section vehicle with a left side driver’s door designed for carrying more than 10 persons. This definition shall include two classifications: Type A-I, with a GVWR over 12,500 pounds; and Type A-II, with a GVWR of 12,500 pounds or under. All Type A buses shall have dual rear wheels.

**TYPE B:** A Type B school bus is a conversion or body constructed and installed upon a van or front-section vehicle chassis, or stripped chassis, with a GVWR of more than 10,000 pounds and designed for carrying more than 10 persons. Part of the engine is beneath and/or behind the windshield and beside the driver's seat. The entrance door is behind the front wheels. All Type B buses shall have air brakes.

**TYPE C:** A Type C school bus is a body installed upon a flat back cowl chassis with a GVWR of more than 10,000 pounds and designed for carrying more than 10 persons. All of the engine is in front of the windshield and the entrance door is behind the front wheels.

**TYPE D:** A Type D school bus is a body installed upon a chassis, with the engine mounted in the front, midship, or rear, with a gross vehicle weight rating of more than 10,000 pounds and designed for carrying more than 10 persons. The engine may be behind the windshield and beside the driver's seat, at the rear of the bus, behind the rear wheels, or midship between the front and rear axles. The entrance door is ahead of the front wheels.

8. **Any bus above 84-passenger capacity requires prior SDE approval.**

**SECTION II - SCHOOL BUS CHASSIS STANDARDS**

**Air Cleaner**

1. The engine intake air cleaner shall be furnished and properly installed by the chassis manufacturer to meet engine specifications.

   The intake air system for diesel engines shall have an air cleaner restriction indicator properly installed by the chassis manufacturer to meet engine specifications.

**Axles**

1. Front axle shall be wide-track, heavy-duty type or shall have GVWR at ground equal to or exceeding that portion of total load which is supported by front axle.

2. Rear axle shall be full-floating, heavy-duty type and shall have GVWR at ground equal to or exceeding that portion of total load which is supported by rear axle.
Small vehicle rear axle may be semi-floating. Diesel-powered vehicle rear axle ratio shall meet manufacturer's recommendations.

3. Vehicle minimum axle capacities at ground when loaded shall meet body manufacturer's GVWR specified by the FMVSS. Axle assemblies shall have the following minimum capacities at ground (see chart, page 56):

**Brakes**

1. A braking system, including service brake and parking brake, shall be provided. All Type A-II school buses shall be to manufacturer’s specifications.

2. Buses using air or vacuum in the operation of the brake system shall be equipped with warning signals, readily audible and visible to the driver, that will give a continuous warning when the air pressure available in the system for braking is 60 psi (pounds per square inch) or less or the vacuum in the system available for braking is eight (8) inches of mercury or less. An illuminated mechanical gauge that will indicate to the driver the air pressure in pounds per square inch or the inches of mercury vacuum available for the operation of the brakes shall be provided.

3. Antilock brake systems for either air or hydraulic brakes shall include control of all axles in compliance with FMVSS 105 or 121.

   A. Air brakes shall be installed on all Type A-I, B, C, and D chasses. All air-operated brake systems shall:

      (1) Meet all FMVSS for air brakes.

      (2) Be S-cam type brakes on all wheels. Camshaft, when applying brakes, shall rotate in same direction as wheels. Automatic slack adjusters shall be the same design on all wheels. Dust covers shall be installed on all wheels.

      (3) Have at least 12 CFM air compressor.

      (4) Be equipped with a parking and emergency brake. A manual control, clearly identified, shall be within easy reach of the driver.

      (5) Brake lining sizes (see chart, page 56).

      (6) Air brake system shall have a reservoir capacity which is equal to or greater than two (2) times total volume of all brake activators at full travel.

      (7) Air dryers shall be installed. Bendix AD-9, Midland DA33100 or prior written approved equal.
B. Buses using a hydraulic assist-booster in the operation of the brake system shall be equipped with warning signals, readily audible and visible to the driver, that will provide continuous warning in the event of a loss of fluid flow from the primary source, or loss of electric source powering the back-up system.

(1) The system shall be equipped with a source of hydraulic pressure, automatically initiated upon loss of power from primary source, and operating independently of the primary power source.

(2) All brake systems shall be designed to permit visual inspection of brake lining wear without the removal of any chassis components.

**Bumper, Front**

1. Front bumper shall be furnished by chassis manufacturer as part of the chassis on Type A, B, and C buses unless energy absorbing or other bumper options necessitate installation by the body manufacturer. When Type D chasses are supplied to a body company by a chassis manufacturer, the body company shall supply the front bumper as part of the body installation.

2. Unless energy absorbing bumper is used, the front bumper shall be of pressed steel channel or equivalent material at least 1/4 inch thick and not less than 8 inches wide (high) and shall extend beyond forward-most part of the body, grille, hood, and fenders and shall extend to outer edges of the fenders at the bumper's top line. Type D buses may use 3/16 inch front bumper, if all areas of Item #4 are met by the bus manufacturer.

3. Tow eyes or hooks shall be furnished and attached so as not to project beyond the front bumper. Tow eyes or hooks attached to the frame chassis shall be furnished by the chassis manufacturer. This installation shall be in accordance with the chassis manufacturer's standards. Type A-II, 12,500 pounds GVWR and under, are exempt from tow hook requirements.

4. The bumper shall be designed or reinforced so that it will not deform when the bus is lifted by a chain that is passed under the bumper (or through the bumper if holes are provided for this purpose) and attached to both tow eyes. For the purpose of meeting this standard, the bus shall be empty and positioned on a level, hard surface, and both tow eyes shall share the load equally.

**Bumper, Front--Optional Equipment**

**Energy Absorbing**
An energy absorbing front bumper may be used providing its design shall incorporate a self-restoring energy absorbing system of sufficient strength to:

1. Push another vehicle of similar GVW without permanent distortion to the bumper, chassis, or body; and

2. Withstand repeated impacts without damage to the bumper, chassis, or body according to the following performance standards:

   A. 7.5 mph fixed barrier impact (FMVSS cart and barrier test).
   
   B. 4.0 mph corner impact at 30 degrees (Part 581 CFR Title 49, Ch V).
   
   C. 20.0 mph into parked passenger car (Type B, C, and D buses of 18,000 lbs. GVW or more).

3. The manufacturer of the energy absorbing system shall provide evidence from an approved test facility (capable of performing the above FMVSS tests) that their product conforms to the above.

Certification

Chassis manufacturer will certify to the SDE and local education agency having pupil transportation jurisdiction that their product meets minimum standards on items not covered by certification issued under requirements of the National Traffic and Motor Vehicle Safety Act.

Color

1. Chassis, including front bumper, shall be black. Hood, cowl and fenders shall be in national school bus yellow. Hood may be painted with non-reflective paint.

2. Rims shall be of a color used by rim manufacturers (silver, gray, black, or white).

Directional Lights

1. Each Type C chassis shall be equipped with Type A front directional lights of the two-faced type mounted either on the top of the fender or hood side panel.

Drive Shaft
1. Torque capacity of the drive shaft assembly shall at least equal maximum engine torque as developed through lowest transmission gear reduction.

2. Each drive shaft shall be equipped with protective metal guard or guards to reduce the possibility of it whipping through floor or dropping to ground if broken. (Body manufacturer is responsible for Mini Bus.)

**Electrical System**

1. Battery

   A. The storage battery(ies) shall have a minimum of 1,250 cold cranking amps at 0 degrees Fahrenheit. Type A-II buses shall be to manufacturer’s specifications.

   B. Since all batteries in Type B, C, and D buses are to be located in a sliding tray, the battery shall be temporarily mounted on the chassis frame by the chassis manufacturer.

      In these cases, the final location of the battery and the appropriate cable lengths shall be according to the SBMTC Design Objectives, 1996 edition.

2. Alternator

   A. All Type A and B buses up to 15,000 lbs. GVWR shall have a minimum 100 amperes alternator.

   B. Type B buses over 15,000 lbs. GVWR and all C and D buses shall be equipped with a heavy-duty truck or bus-type alternator meeting SAE J 180; having a minimum output rating of 120 amperes, alternator shall be capable of producing a minimum of 50 percent of its maximum rated output at the engine manufacturer's recommended idle speed.

   C. All buses equipped with an air conditioner or electrical power lift shall have a minimum 130 amperes alternator.

   D. Direct-drive alternator is permissible in lieu of belt drive. Belt drive shall be capable of handling the rated capacity of the alternator with no detrimental effect on other driven components.

   E. Refer to SBMTC Design Objectives, 1996 edition, for estimating required alternator capacity.

3. Wiring
A. General--All wiring shall conform to current applicable recommended practices of the Society of Automotive Engineers.

(1) All wiring shall use standard colors and number coding and each chassis shall be delivered with a wiring diagram that coincides with the wiring of the chassis.

B. Chassis manufacturer shall install a readily accessible terminal strip or plug on the body side of the cowl, or at an accessible location in the engine compartment of vehicles designed without a cowl, that shall contain the following terminals for the body connections:

(1) Main 100-amp body circuits
(2) Tail lamps
(3) Right turn signal
(4) Left turn signal
(5) Stop lamps
(6) Back-up lamps
(7) Instrument panel lights (rheostat controlled by head lamp switch)

4. Circuits

A. An appropriate identifying diagram (color and number coded) for electrical circuits shall be provided to the body manufacturer for distribution to the end user.

B. Headlight system shall be wired separately from the body-controlled solenoid.

Engine

1. The chassis shall be equipped with a diesel engine of minimum size:

   29 to 60 passengers--170 hp motor minimum
   65 and above passengers--185 hp motor minimum
   Types A and B under 29 passenger--manufacturer's specifications

2. Engine heater may be installed as per manufacturer's specifications.

Exhaust System

1. The exhaust pipe, muffler, and tail pipe shall be outside the bus body and attached to the chassis frame. The tail pipe shall extend at least five inches beyond the chassis frame through the left or right side of the rear bumper not more than two and not less than one inch. Type A vehicles may have manufacturer's standard exhaust system.
2. Muffler and tail pipe shall be constructed of aluminized, or equivalent corrosion-resistant material. The tail pipe shall be made of at least 16-gauge material and shall be mounted in such a way that it will not cause damage to brake lines.

3. The exhaust pipe shall be properly insulated from the fuel tank and connections thereof by a metal shield at any point where it is four inches or less from tank or connections.

4. The exhaust system on vehicles designed for the transportation of special needs pupils shall be routed to the left of the left frame rail to allow for the installation of a lift on the right side of the vehicle.

5. On Types B, C and D buses, no exhaust pipe shall exit beneath an emergency exit or fuel fill.

6. Type D rear engine exhaust shall exit beneath rear bumper to manufacturer’s specifications.

Fenders, Hoods--Types B and C Vehicles

1. Total spread of outer edges of front fenders, measured at fender line, shall exceed total spread of front tires when front wheels are in straight-ahead position.

2. Front fenders shall be properly braced and free from any body attachments.

3. Fiberglass tilt hood shall be provided. Hood opening and closing effort shall be minimized to aid driver with pre-trip inspections and service. If hood is not designed to remain secure in the open position, a safety prop will be required. Wiring harness shall be “quick disconnect” type to aid with servicing.

Frame

1. Frame or equivalent shall be of such design and strength characteristics as to correspond at least to standard practice for trucks of the same general load characteristics which are used for highway service.

2. Any secondary manufacturer that modifies the original chassis frame shall guarantee the performance of workmanship and materials resulting from such modification.

3. Any frame modification shall not be for the purpose of extending the wheel base.

4. Holes in top or bottom flanges or side units of the frame, and welding to the frame, shall not be permitted except as provided or accepted by chassis manufacturer.
5. Frame lengths shall be provided in accordance with SBMTC Design Objectives, 1996 edition.

**Fuel Tank**

1. All Types B, C, and D chassis above 170-inch wheel base shall have a minimum 60-gallon fuel tank with a 55-gallon actual draw. The tank shall be filled and vented to the outside of the body, the location of which shall be so that accidental fuel spillage will not drip or drain on any part of the exhaust system.

2. No portion of the fuel system which is located to the rear of the engine compartment, except the filler tube, shall extend above the top of the chassis frame rail. Fuel lines shall be mounted to obtain maximum possible protection from the chassis frame.

3. Primary and secondary fuel filters with replaceable spin on element shall be installed between fuel tank and engine. At least one fuel filter shall be of the water separator type.

4. Fuel tank installation shall be in accordance with SBMTC Design Objectives, 1996 edition, for location on chassis right frame rail or between frame rails, and filler tube to be located on the right side of the bus.

5. Type A-II buses may meet manufacturer's specifications.

6. The fuel tank on vehicles constructed with a power lift unit may be mounted on left chassis rail or behind rear wheels.

7. Installation of alternative fuel tanks shall comply with all applicable fire codes.

8. On Types A-I, B, C, and D vehicles, fuel tanks shall have interior baffles to help prevent buses from fuel starvation on inclines.

**Governor**

1. An engine governor is permissible. When it is desired to limit road speed, a road speed governor should be installed.

2. When engine is remotely located from driver, governor shall be installed to limit engine speed to maximum revolutions per minute recommended by engine manufacturer, or a tachometer shall be installed so the engine speed may be known to driver.
Heating System, Provision for

1. The chassis engine shall have plugged openings for the purpose of supplying hot water for the bus heating system. The opening shall be suitable for attaching pipe thread/hose connector. The engine shall be capable of supplying water having temperature of at least 170 degrees Fahrenheit at a flow rate of 50 pounds/per minute at the return end of 30 feet of one inch inside diameter automotive hot water heater hose (SBMI Standard No. 001--Standard Code for Testing and Rating Automotive Bus Hot Water Heating and Ventilating Equipment).

Horn

Bus shall be equipped with horn or horns of standard make with each horn capable of producing a complex sound in bands of audio frequencies between 250 and 2,000 cycles per second and tested per Society of Automotive Engineers Standard J--377. There shall be no air horns.

Instruments and Instrument Panel

1. Chassis shall be equipped with the following instruments and gauges (lights in lieu of gauges are not acceptable except as noted):

   A. Speedometer
   
   B. Odometer which will give accrued mileage (to seven digits) including tenths of miles
   
   C. Tachometer
   
   D. Voltmeter
   
      (1) Ammeter with graduated charge and discharge with ammeter and its wiring compatible with generating capacities is permitted in lieu of voltmeter
   
   E. Oil-pressure gauge
   
   F. Water temperature gauge
   
   G. Fuel gauge
   
   H. Upper beam headlight indictor
   
   I. Brake indicator gauge (vacuum or air)
(1) Light indicator in lieu of gauge permitted on vehicles equipped with hydraulic-over-hydraulic brake system

J. Turn signal indicator

K. Glow-plug indicator light where appropriate

2. All instruments shall be easily accessible for maintenance and repair.

3. Instruments and gauges shall be mounted on the instrument panel in such a manner that each is clearly visible to the driver while in a normal seated position in accordance with SBMTC Design Objectives, 1996 edition.

4. Instrument panel shall have lamps of sufficient candlepower to illuminate all instruments and gauges and shift selector indicator for automatic transmission.

**Oil Filter**

Oil filter with replaceable element shall be provided and connected by flexible oil lines if it is not of built-in or engine-mounted design. Oil filter shall have a capacity of at least one (1) quart.

**Openings**

All openings in floorboard or firewall between chassis and passenger-carrying compartment, such as for gearshift selector and parking brake lever, shall be sealed.

**Passenger Load**

1. Actual GVW is the sum of the chassis weight, plus the body weight, plus the driver's weight, plus total seated pupil weight.

   A. For purposes of calculation, the driver's weight is 150 pounds.

   B. For purposes of calculation, the pupil weight is 120 pounds per pupil.

2. Actual GVW shall not exceed the chassis manufacturer's GVWR for the chassis.

3. Manufacturer's GVWR shall be furnished in duplicate (unless more are requested) by manufacturers to the state agency having pupil transportation jurisdiction. The state agency shall, in turn, transmit such ratings to each other state agency responsible for development or enforcement of state standards for school buses.
Power and Gradeability

Gross Vehicle Weight (GVW) shall not exceed 185 pounds per published net horse power of the engine at the manufacturer’s recommended maximum number of revolutions per minute.

Retarder System (Optional)

Retarder system, if used, shall maintain the speed of the fully loaded school bus at 19.0 mph or 30 km/hr on a 7% grade for 3.6 miles or 6 km.

Shock Absorbers

Bus shall be equipped with front and rear double-action shock absorbers compatible with manufacturer’s rated axle capacity at each wheel location.

Springs

1. Capacity of springs or suspension assemblies shall be commensurate with chassis manufacturer’s GVWR.

2. Leaf springs shall be of the progressive type. Air ride suspension may be used on the rear of Types C and D buses.

3. Front springs shall be of the leaf type, shall have a stationary eye at one end and shall be protected by a wrapper leaf in addition to the main leaf.

Steering Gear

1. Steering gear shall be approved by chassis manufacturer and designed to assure safe and accurate performance when vehicle is operated with maximum load and at maximum speed.

2. If external adjustments are required, steering mechanism must be accessible to accomplish same.

3. No changes shall be made in steering apparatus which are not approved by chassis manufacturer.

4. There shall be a clearance of at least two inches between steering wheel and cowl, instrument panel, windshield, or any other surface.

5. Power steering is required and shall be of the integral type with integral valves.

6. The steering system shall be designed to provide means for lubrication of all wear-points, if wear-points are not permanently lubricated.
7. Steering wheel shall meet manufacturer’s specifications.

**Tires and Rims**

1. Radial tubeless tires and rims of proper size and tires with load rating commensurate with chassis manufacturer’s GVWR shall be provided.

2. Dual rear tires shall be provided on Types A, B, C, and D school buses.

3. All tires on any given vehicle shall be of the same size and the load range of said tires shall meet or exceed the gross axle weight rating as required by FMVSS 120.

4. If the vehicle is equipped with a spare tire and rim assembly, it shall be of the same size as those mounted on the vehicle.

5. If tire carrier is required, it shall be suitably mounted in an accessible location outside the passenger compartment.

**Transmission**

An automatic transmission shall be required on all buses. Type A-II may be to manufacturer’s specifications. Types A-I, B, C, and D buses AT545 or prior approved equal. The automatic transmission shall have at least four forward-gear ratios, plus integral torque converter. The transmission shift quadrant shall provide four forward drive ranges plus neutral and reverse ranges. Within the range selected, ratio changes shall be effected automatically and at full engine power if desirable, and without use of an engine disconnect clutch. MT643 or prior approved equal required over 30,000 pounds GVWR.

**Turning Radius**

1. Chassis with a wheel base of 264 inches or less shall have a right and left turning radius of not more than 42 and 1/2 feet, curb-to-curab measurement.

2. Chassis with a wheel base of 265 inches or more shall have a right and left turning radius of not more than 44 and 1/2 feet, curb-to-curab measurement.

**Undercoating**

Chassis manufacturer, or agent thereof, shall coat the undersides of steel or metallic-constructed front fenders with rust-proofing compound for which compound manufacturers have issued notarized certification of compliance to chassis builder that compound meets or exceeds all performance and qualitative requirements of paragraph 3.4 of Federal Specification TT-C520B using modified test.
**Weight Distribution**

Weight distribution of a fully loaded bus on a level surface shall be such as not to exceed the manufacturer’s front gross axle rating and rear gross axle weight rating.

**SECTION III - SCHOOL BUS BODY STANDARDS**

**Air Conditioning**

Buses may be equipped with an air conditioning unit if the local education agency (LEA) desires. If the bus is equipped with air conditioning, the minimum specifications under air conditioning package on page 51 shall be met.

**Aisle**

1. All emergency doors shall be accessible by a 12-inch minimum aisle. Aisle shall be unobstructed at all times.

2. The seat backs shall be slanted sufficiently to give aisle clearance of 15 inches at tops of seat backs.

**Back-Up Warning Alarm**

An automatic audible alarm shall be installed behind the rear axle and shall comply with the Society of Automotive Engineers published Back-up Alarm Standards (SAE 994) a minimum of 112 dBA for rubber-tired vehicles.

**Battery/Batteries**

1. Battery/batteries is to be furnished by chassis manufacturer.

2. When the battery/batteries is mounted as described in Chassis Standard (page 6), the body manufacturer shall securely attach the battery on a slide-out or swing-out tray in a closed, vented compartment in the body skirt, so that the battery is accessible for convenient servicing from the outside. Battery compartment door or cover shall be hinged at front and secured by an adequate and conveniently-operated latch or other type fastener.

**Bumper (Front)**

On a Type D school bus, if the chassis manufacturer does not provide a bumper, it shall be provided by the body manufacturer. The bumper will conform to the standards in the chassis section.
Bumper (Rear)

1. Bumper shall be of pressed steel channel or equivalent material, at least 3/16-inch thick, and shall be a minimum of 9-1/2 inches wide (high) on all Types B, C, and D buses. Type A-II buses shall have a minimum of an 8-inch rear bumper.

2. Bumper shall be wrapped around back corners of the bus. It shall extend forward at least 12 inches, measured from the rear-most point of body at the floor line.

3. Bumper shall be attached to the chassis frame in such a manner that it may be easily removed. It shall be so braced as to withstand impact from a rear or side impact. It shall be so attached as to discourage hitching of rides.

4. Bumper shall extend at least one inch beyond rear-most part of body surface measured at the floor line.

5. An energy-absorbing rear bumper may be used, providing a self-restoring energy absorbing bumper system so attached to prevent the hitching of rides and of sufficient strength to:

   A. Withstand repeated impacts without damage to the bumper, chassis, or body according to the following FMVSS performance standards:

      (1) 2.0 MPH fixed barrier impact (FMVSS cart and barrier test)
      (2) 4.0 MPH corner impact at 30 degrees (Part 581, CFR Title 49)
      (3) 5.0 MPH center impact (Part 581, CFR Title 49)

   B. The manufacturer of the energy-absorbing system shall provide evidence from an approved test facility (capable of performing the above FMVSS test) that their product conforms to the above.

6. Tow eyes or hooks may be furnished on the rear and attached so they do not project beyond the rear bumper. The installation shall be in accordance with the chassis manufacturer’s specifications.

Bumper, Front - Energy Absorbing (Optional)

1. An energy-absorbing front bumper may be used, providing its design shall incorporate a self-restoring energy absorbing system of sufficient strength to:

   A. Withstand repeated impacts without damage to the bumper, chassis, or body according to the following performance standards:
(1) 7.5 mph fixed-barrier impact (FMVSS cart and barrier test)  
(2) 4.0 mph corner impact at 30 degrees (Part 581, CFR Title 49)  
(3) 20.0 mph into parked passenger car (Types B, C, and D buses of 18,000 lbs. GVW or more)

B. The manufacturer of the energy-absorbing system shall provide evidence from an approved test facility (capable of performing the above FMVSS tests) that their product conforms to the above.

Ceiling

See Insulation and Interior, Body Standard.

Certification

See Page 1, Section I #2.

Chains (Tire)

See Wheel Housing Body Standard.

Color

1. The school bus body shall be painted National School Bus Yellow.

2. The body exterior paint trim, bumper, lamp hoods and lettering shall be black.

3. The roof of the bus may be painted white not to extend below the drip rails on the sides of the body except that front and rear roof caps shall remain National School Bus Yellow.

Construction

1. Construction shall be of prime commercial quality steel or other material with strength at least equivalent to all-steel as certified by bus body manufacturer. All such construction materials shall be fire resistant.

2. Construction shall be dust proof and watertight, so bus does not leak under normal operating conditions.

3. Body joints present in that portion of the Type A school bus body furnished exclusively by the body manufacturer shall conform to the performance requirements of FMVSS 221, “School Bus Body Joint Strength.” This does not include the body joints created when body components are attached to components furnished by the chassis manufacturer.
4. Type A school bus bodies shall be equipped with restraining barriers conforming to FMVSS 222, “School Bus Passenger Seating--Crash Protection,” Sections 5.2 and 5.3.

**Crossing Control Arm**

1. Buses may be equipped with a crossing control arm mounted on the right side of the front bumper, which shall not open more than 90 degrees.

2. All components of the crossing control arm and all connections shall be weatherproofed.

3. The crossing control arm shall incorporate system connectors (electrical, vacuum, or air) at the gate and shall be easily removable to allow for towing of the bus.

4. The crossing control arm shall meet or exceed SEA Standard J1133.

5. The crossing control arm shall be constructed of non-corrosive or nonferrous material or treated in accordance with the body sheet metal standard (see Metal Treatment).

6. There shall be no sharp edges or projections that could cause hazard or injury to students.

7. The crossing control arm shall extend approximately 72” from the front bumper when in the extended position.

8. The crossing control arms shall extend simultaneously with the stop arm(s) by means of the stop arm controls.

9. Crossing control arm shall be Specialty Manufacturing Company, Part #58600, or prior approved equal.

**Defrosters**

1. The windshield defroster and defogging system shall provide defogging of the entire windshield, driver’s side window, and entrance door glasses by utilizing hot air taken from the heater core with vents across the entire windshield.

2. The defrosting system shall conform to Society of Automotive Engineers’ Standards J381 and J382.

3. The defroster and defogging system shall be capable of furnishing heated outside ambient air.

4. Auxiliary fans are not considered defrosting or defogging systems.
5. Portable heaters shall not be used.

Doors

1. Service Door:

A. Service door shall be in the driver’s control, and designed to afford easy release and provide a positive latching device on manual operating doors to prevent accidental opening. When a hand lever is used, no part shall come together that will shear or crush fingers. Manual door controls shall not require more than 25 pounds of force to operate at any point throughout the range of operation.

B. Service door shall be located on the right side of the bus, opposite and within direct view of driver.

C. Service door shall have a minimum horizontal opening of 24 inches and a minimum vertical opening of 68 inches. Type A vehicles shall have a minimum opening area of 1200 square inches.

D. Service door shall be a split type, both sections opening outward.

E. Lower, as well as upper door panels, shall be of approved safety glass. Bottom of each lower glass panel shall not be more than 10 inches from the top surface of bottom step. Top of each upper glass panel shall not be more than 6 inches from the top of the door. Type A vehicles shall have an upper panel (windows) of safety glass with an area of at least 350 square inches.

F. Vertical closing edges on split type entrance doors shall be equipped with flexible material to protect the children’s fingers. Type A vehicles may be equipped with chassis manufacturer’s standard entrance door.

G. There shall be no door to the left in driver compartment on Types B, C or D vehicles.

H. All doors shall be equipped with padding at the top edge of each door opening. Pad shall be at least three inches wide and one inch thick and extend the full width of the door opening.

Emergency Exits

1. Emergency Door:

A. Emergency door shall be hinged on right side if in rear end of bus and on front side if on left or right side of bus. It shall open outward and be labeled inside to indicate how it is to be opened. If double emergency doors are used on Type A
vehicles, they shall be hinged on the outside edge and shall have a three-point 
fastening device. A device shall be used that holds the door open to prevent the 
emergency door from closing during emergencies and school bus evacuation 
drills. If emergency door locks are used, vehicle ignition must be disabled until 
emergency door lock is deactivated.

B. Upper portion of the emergency door shall be equipped with approved safety 
glazing, exposed area of which shall be at least 400 square inches. The lower 
portion of the rear emergency door on Types B, C, and D vehicles shall be 
equipped with a minimum of 350 square inches of approved safety glazing.

C. There shall be no steps leading to an emergency door.

D. Words EMERGENCY DOOR, in letters at least two inches high, shall be 
placed at top of or directly above the emergency door or on the door in the metal 
panel above the top glass, both inside and outside of the bus.

E. The emergency door shall be equipped with padding at top edge of each door 
opening. Padding shall be at least three inches wide and one inch thick, and 
extend the full width of the door opening.

F. The side emergency door, if installed, must meet the requirements as set forth in 
FMVSS, Standard 217 (a), regardless of its use with any other combination of 
emergency exits.

   (1) Left side emergency door shall have a 20 inch unobstructed passageway and 
   no flip seat is to be used. A barrier shall be used just before the door 
   opening.

G. There shall be no obstruction higher than 1/4 inch across the bottom of any 
emergency door opening.

2. Additional Emergency Exits:

A. Types A, B, C, and D vehicles shall be equipped with emergency exits in the 
following capacity vehicles prior to modification for special needs students:

   • 0 to 22 passenger: one emergency window exit per side and one roof hatch 
     located midpoint

   • 23 to 54 passenger: one emergency window exit per side located midpoint 
     and two roof hatches

   • 55 and above passenger: two emergency window exits per side, and two roof 
     hatches
B. Each emergency exit shall comply with FMVSS 217. These emergency exits are in addition to the rear emergency door or exit. Roof hatches must be either Trans Spec Econo Vent or Speciality Manufacturing 8600 or 8900 series or prior approved equal.

(1) Emergency exit windows shall be as evenly spaced as possible under FMVSS 217 guidelines and shall not be obstructed by any devices.

C. In addition to the audible warning required on emergency doors by FMVSS 217, additional emergency exits shall also be like protected.

D. School bus emergency exits shall be marked with a minimum one inch wide strip of retro-reflective tape, either red, white or yellow in color, to be placed around the outside perimeter of the emergency exit opening, not the emergency exit itself.

**Emergency Equipment**

1. Fire Extinguishers:

   A. The bus shall be equipped with at least one pressurized, dry chemical fire extinguisher complete with hose to meet Underwriters Laboratories, Inc., approval. A pressure gauge shall be mounted on the extinguisher and easily read without moving the extinguisher from its mounted position.

   The bracket shall be a heavy duty, snap-in, spring type. Band type holders are not acceptable.

   B. The fire extinguisher shall have a capacity of at least five pounds with an Underwriters Laboratories total rating of 2A10BC or greater. The operating mechanism shall be sealed with a type of seal which will not interfere with the use of the fire extinguisher.

   C. Fire extinguishers must comply with State Fire Codes.

2. First-Aid Kit:

   A. Bus shall have a removable, moisture proof and dust-proof first-aid kit mounted with a separate bracket in an accessible place below the window line in driver’s compartment. This place shall be marked to indicate its location.
B. Contents shall include:

- 2 1” x 2 1/2 yards adhesive tape rolls
- 24 sterile gauze pads 3” x 3”
- 10 3/4” x 3” adhesive bandages
- 8 2” bandage compress
- 100 3” bandage compress
- 2 2” x 6” sterile gauze roller bandages
- 2 non-sterile triangular bandages approximately 40” x 36” x 54” with 2 safety pins
- 3 sterile gauze pads 36” x 36”
- 3 sterile eye pads
- 1 pair rounded-end scissors
- 1 pair latex gloves
- 1 mouth-to-mouth airway

3. Body Fluid Clean-up Kit:

A. Each bus shall have a removable and moisture proof body fluid clean-up kit. It shall be properly mounted and identified as a body fluid clean-up kit. Must meet OSHA regulations.

4. Warning Devices:

A. Each school bus shall contain at least three (3) reflectorized triangle road warning devices mounted in an accessible place in the driver’s compartment. The mounting location in Type A vehicles is optional. These devices must meet requirements in FMVSS 125.

**Floor and Floor Coverings**

1. Floor in underseat area, including tops of wheel housing, driver’s compartment and toe board, shall be covered with rubber floor covering or equivalent, having a minimum overall thickness of .125 inch.

2. Floor covering in aisles shall be of aisle-type rubber or equivalent, wear-resistant and ribbed. Minimum overall thickness shall be .187 inch measured from tops of ribs.

3. Floor covering must be permanently bonded to floor and must not crack when subjected to sudden changes in temperature. Bonding or adhesive material shall be waterproof and shall be of a type recommended by the manufacturer of floor-covering material. All seams must be sealed with waterproof sealer.
4. Manufacturer shall provide a screw-down plate to access fuel tank sending unit that is secured and insulated. Plate shall be mounted so that access is readily available to repair personnel and so that floor covering is not disturbed during repair process.

5. Floor shall be of metal or alloy at least equal in strength to 14-gauge prime commercial quality steel and so constructed that exhaust gases cannot enter the passenger compartment.

6. All closures between the bus body and the engine compartment shall be fitted with gas-tight gaskets and pedal openings shall be closed bellows type, gas-tight boots.

7. There shall be a plate, of adequate size, provided to allow for transmission access or service.

**Floor Plan**

School bus body manufacturer shall submit floor plans at the time bid quotations are submitted showing:

1. Location of the emergency door, emergency windows and roof hatches.

2. Aisle and staging area.

**Heaters**

1. Heaters shall be of hot-water type with a minimum of 80,000 Btu. rating. Heaters shall utilize separate blower motor, switches, circuit breakers and ducting from heater core.

2. If only one heater is used, it shall be a fresh-air or combination fresh-air and recirculation type.

3. If more than one heater is used, additional heaters shall be a recirculating-air type.

4. The heating system shall be capable of maintaining the temperature throughout the bus of not less than 55 degrees Fahrenheit during average minimum January temperature as established by the U. S. Department of Commerce, Weather Bureau, for the area in which the vehicle is to be operated.

5. All heaters installed by body manufacturers shall bear a name plate that shall indicate the heater rating in accordance with SBMI Standard No. 001, with said plate to be affixed by the heater manufacturer which shall constitute certification that the heater performance is as shown on the plate.

6. Heater hoses shall be adequately supported to guard against excessive wear due to vibration. The hoses shall not dangle or rub against the chassis or sharp edges and shall not interfere with or restrict the operation of any engine function. Heater hose
shall conform to Society of Automotive Engineers’ Standard J20c. Heater lines on the interior of bus shall be shielded to prevent scalding of the driver or passengers.

7. Each hot water system installed by a body manufacturer shall include one shut-off valve in the pressure line and one shut-off valve in the return line with both valves at or near the engine in an accessible location.

8. There shall be a water flow regulating valve installed in the pressure line for convenient operation by the driver while seated.

9. Accessible bleeder valves shall be installed in an appropriate place in the return lines of body company-installed heaters to remove air from the heater lines.

10. Access panels shall be provided to make heater motors, cores, and fans readily accessible for service. Outside access panel may be provided for the driver’s heater.

11. On Types B, C, and D buses heat shall be channeled one-half of body length on left side at floor level with blower at end of channel OR buses must be equipped with a 50,000 Btu auxiliary heater.

Identification

1. School bus bodies shall bear the words, SCHOOL BUS, in eight-inch black letters on National School Bus Yellow, on front and back of bus (lettering between flasher lights). The words, (Name of System______________), in five-inch letters shall be on each side of bus in black standard unshaded letters on National School Bus Yellow. Lettering shall conform to “Series B” of Standard Alphabets for Highway Signs. Each bus shall be numbered on both sides and the rear before being put into service. An agreement between manufacturer and purchaser shall be reached at time order is placed as to who will put the numbers on the buses. Any other numbering shall be optional.

2. Only signs and lettering approved by state law or regulation, limited to name of owner or operator and any marking necessary for identification, shall appear on sides of bus.

Inside Height

Inside body height shall be 72 inches or more, measured metal to metal, at any point on longitudinal center line from front vertical bow to rear vertical bow. Inside body height of Type A buses shall be 62 inches or more.

Insulation

1. Ceiling and walls shall be insulated with proper material to deaden sound and reduce vibration to a minimum. If thermal insulation is specified, it shall be fire-resistant
and approved by Underwriters Laboratories, Inc. If buses are equipped with air conditioning, walls and ceilings must be insulated to improve air conditioner efficiency.

2. If floor insulation is required, it shall be either 5-ply nominal 19/32 inches thick plywood, or a material of equal or greater strength and insulation R value, and it will equal or exceed properties of exterior-type softwood plywood, C-D Grade as specified in standard issued by U. S. Department of Commerce. When plywood is used, all exposed edges shall be sealed.

**Interior**

1. Interior of bus shall be free of all unnecessary projections, which include luggage racks and attendant hand rails, likely to cause injury. This standard requires inner lining on ceilings and walls. If ceiling is constructed to contain lapped joints, forward panel shall be lapped by rear panel and exposed edges shall be beaded, hemmed, flanged, or otherwise treated to minimize sharp edges.

2. The driver’s area forward of the foremost padded barriers will permit the mounting of required safety equipment and vehicle operation equipment.

3. Every school bus shall be constructed so that the noise level taken at the ear of the occupant nearest to the primary vehicle noise source shall not exceed 85 dBA when tested.

4. Any added equipment shall be flush mounted with the exception of the video system.

**Lamps and Signals**

1. Interior lamps shall be provided which adequately illuminate aisle and step well. Step well light shall be illuminated by a service door operated switch, to illuminate only when headlights and clearance lights are on and service door opened.

2. Body instrument panel lights shall be controlled by an independent rheostat switch.

3. School bus alternately flashing red and amber signal lamps: **Definition**--School bus alternately flashing red and amber signal lamps are lamps mounted at same horizontal level, intended to identify vehicle as school bus and to inform other users of highway that such vehicle is preparing to stop, or is stopped, on roadway to take on or to discharge schoolchildren.

   A. Bus shall be equipped with two red lamps and two amber lamps at rear of vehicle and two red lamps and two amber lamps at front of vehicle. One amber lamp shall be located near each red signal lamp at same level, but closer to the vertical centerline of bus.
B. The signaling system, including red and amber signal lamps and stop arm with alternating flashing lamps, shall be so designed and wired as to have the following characteristics:

1. When entrance door is closed, a manual push button may be depressed and amber pilot light and amber warning lights will flash.

2. When entrance door is opened, amber pilot and amber warning lights will go off, and red pilot and red warning lights will flash; also, stop arm will be extended and lights on stop arm will flash.

3. On closing entrance door, all lights will go out and stop arm will retract automatically.

4. If entrance door is opened without depressing manual push button, no lights will flash, nor will stop arm be extended.

C. Area around lens of each alternately flashing signal lamp, and extending outward approximately three inches, shall be painted black. In installations where there is no flat vertical portion of body immediately surrounding entire lens of lamp, circular or square band of black approximately three inches wide, immediately below and to both sides of lens, shall be painted on body or roof area against which signal lamp is seen (from distance of 500 feet along axis of vehicle).

4. Turn signal lamps: Rear turn signal lamps shall be at least seven inches in diameter mounted on rear with arrow in amber lens. These signals must be independent units and must be equipped with four-way hazard warning switch to cause simultaneous flashing of turn signal lamps when needed as vehicular traffic hazard warning. Rear directional lights shall be mounted not more than 15 inches from plane of the side of the body, and not more than 14 inches below glass in rear of body. Bus shall be equipped with two brake stop lights at least seven inches in diameter with red lens not in combination with directional lights. Type A conversion vehicle lamps must be 21 square inches in lens area. Two combination lamps with a minimum diameter of four inches, or if a shape other than round, a minimum 12 square inches of illuminated area shall be placed on the rear of the body between the beltline and the floor line. Rear license plate lamp may be combined with one lower tail lamp. Stop lamps shall be activated by the service brakes and shall emit a steady light when illuminated.

A. All Type D buses shall have side turn indicators on both sides located at floor line approximately 6 to 8 feet from front of bus.

5. On all buses equipped with a monitor for the front and rear lamps of the school bus, the monitor shall be mounted in full view of the driver. If the full circuit current
passes through the monitor, each circuit shall be protected by a fuse or circuit breaker against any short circuit or intermittent shorts.

6. A yellow flashing strobe light shall be installed on the roof of a school bus not to exceed 1/3 the body length forward from the rear of the roof edge. Light shall have a single yellow lens emitting light 360 degrees around its vertical axis and may not extend above the roof more than maximum legal height. A manual switch and a pilot light of low intensity must be included to indicate when light is in operation. The pilot light shall be incorporated into the switch.

**Metal Treatment**

1. All metal used in construction of bus body shall be zinc-coated or aluminum-coated or treated by equivalent process before bus is constructed. Included are such items as structural members, inside and outside panels, door panels and floor sills. Excluded are such items as door handles, grab handles, interior decorative parts and other interior plated parts.

2. All metal parts that will be painted shall be in addition to above requirements, chemically cleaned, etched, zinc-phosphate-coat and zinc-chrome or epoxy primed or conditioned by equivalent process.

3. In providing for these requirements, particular attention shall be given lapped surfaces, welded connections of structural members, cut edges punched or drilled hole areas in sheet metal, closed or box sections, unvented or undrained areas and surfaces subjected to abrasion during vehicle operation.

4. As evidence that above requirements have been met, samples of materials and sections used in construction of the bus body, when subjected to 1,000-hour salt spray test as provided for in latest revision of ASTM Standard B-117 “Standard Method of Salt Spray (Fog) Testing” shall not lose more than 10 percent of material by weight.

**Mirrors**

1. Interior Mirror: Interior mirror shall be either clear laminated glass or clear view glass bonded to a backing which retains the glass in the event of breakage. Mirror shall have rounded corners and protected edges. Type A bus shall have a minimum of a 6” x 16” mirror and Type B, C, and D buses shall have a minimum of a 6” x 30” mirror. It shall be securely attached on the windshield header and so located as to give the driver a clear view of the entire interior of the bus and the road behind.

2. Exterior Mirror: Each school bus shall be equipped with a system of exterior mirrors as defined in FMVSS 111.
A. Rear Vision Mirror: The mirror system shall be capable of providing a view along the left and right sides of the vehicle which will provide the driver with a view of the rear tires at ground level, a minimum distance of 200 feet to the rear of the bus and at least 12 feet perpendicular to the side of the bus at a distance of 32 feet back from the front bumper.

B. Crossview Mirror System: The crossview mirror system shall provide the driver with indirect vision of an area at ground level from the front bumper forward and entire width of the bus to a point where the driver can see by direct vision. The crossview system shall also provide the driver with direct vision of the area at ground level around the left and right front corners of the bus to include the tires and service entrance on all types of buses to a point where it overlaps with the rear vision mirror system. A metal reinforcement plate shall be installed under the hood area of fiberglass hoods in order to reinforce crossview mirror mounting base area.

C. This system of mirrors shall be easily adjustable but be rigidly braced so as to reduce vibration.

Mounting

1. Chassis frame shall support rear body cross member. Bus body shall be attached to chassis frame at each main floor sill, except where chassis components interfere, in such manner as to prevent shifting or separation of the body from the chassis under severe operating conditions.

2. Insulation material shall be placed at all contact points between body and chassis frame on Types A, B, C and D buses, and shall be so attached to the chassis frame or body that it will not move under severe operating conditions.

Overall Length

Overall length of bus shall not exceed 40 feet excluding accessories

Overall Width

Overall width of bus shall not exceed 102 inches excluding accessories.

Public Address System

Buses may be equipped with a public address system having interior and exterior speakers. Interior speakers shall be flush mounted with bulkhead.

Reflective Material
1. Front and/or rear bumper may be marked diagonally 45 degrees down to centerline of pavement with 2” x 1/4” wide strips of non-contrasting reflective material.

2. Rear of bus body shall be marked with strips of reflective National School Bus Yellow (NSBY) material to outline the perimeter of the back of the bus using material which conforms with the requirements of FMVSS 571.131 (Table I). The perimeter marking of rear emergency exits per FMVSS 217 and/or the use of reflective SCHOOL BUS signs partially accomplish the objective of this requirement. To complete the perimeter marking of the back of the bus, strips of at least one-inch reflective NSBY material shall be applied horizontally above the rear windows and above the rear bumper extending from the rear emergency exit perimeter marking outward to the left and rear corners of the bus; and vertical strips shall be applied at the corners connecting these horizontal strips.

3. SCHOOL BUS signs, if not of lighted design, shall be marked with reflective NSBY material comprising background for lettering of the front and/or rear SCHOOL BUS signs.

4. Sides of bus body shall be marked with reflective NSBY material at least one inch in width, extending the length of the bus body and located (vertically) between the floor line and the belt line.

**NOTE:** Reflectivity of stop signal arm is to be addressed under Stop Signal Arm Section. Signs, if used, placed on the rear of the bus relating to school bus flashing signal lamps or railroad stop procedure may be of reflective material as specified by each state.

**Rub Rails**

1. There shall be one rub rail located on each side of bus approximately at seat level which shall extend from rear side of entrance door completely around bus body (except emergency door) to point of curvature near outside cowl on left side.

2. There shall be one rub rail located approximately at floor line which shall cover the same longitudinal area as upper rub rail, except at wheel housing, and shall extend only to radii of right and left rear corners.

3. Both rub rails shall be attached at each body post and all other upright structural members.

4. Both rub rails shall be 4 inches or more in width in their finished form, shall be of 16-gauge steel or suitable material of equivalent strength, and shall be constructed in corrugated or ribbed fashion.
5. Both rub rails shall be applied outside body or outside body posts. Pressed-in or snap-on rub rails do not satisfy this requirement. For Types A and B vehicles using chassis manufacturer’s body, or for Types C, and D buses using rear luggage or rear engine compartment, rub rails need not extend around rear corners.

6. There shall be a rub rail or equivalent bracing located horizontally at the bottom edge of the body side skirts.

**Seat Belt for Driver**

Driver’s seat shall be equipped with the seat belt anchored to the floor, housed in scabbard equipped with emergency locking retractor (one side only). Driver seat shall be equipped with Type II occupant protection (lap and shoulder belt). Adjustability of the mounting point for the driver seat belt pillar loop shall be provided to accommodate all heights and weights of bus drivers without interference with the driver’s face or neck. The requirements of FMVSS 209 and 210 shall be met.

**Seat and Crash Barriers**

1. Seats shall be spaced to obtain a minimum of 24-inch hip-to-knee room measured horizontally at seat cushion level at the transverse centerline of seat. In making this measurement from back of seat cushion to back of seat or barrier in front, upholstery may be placed against padding both forward and rear but padding may not be compressed. Greater seat spacing may be specified on local bids not to exceed the maximum allowable per FMVSS 222.

2. In determining seating capacity of standard school bus, allowable average rump width shall be 13 inches where 3-3 seating plan is used. Thirteen (13) or 15 inches where 3-2 seating plan is used on special buses.

3. All seats shall be bench style, forward facing and have a minimum depth of 15 inches. No transit or activity seat will be used. There shall be no arm rest on student seats. No bus shall be equipped with jump seats or portable seats.

4. All seat frames attached to the seat rail shall be fastened with two (2) bolts, washers and nuts or flange-headed nuts. Each seat leg shall be secured to the floor by a minimum of two (2) bolts, washers and nuts. Flange-head nuts may be used in lieu of nuts and washers, or seats may be track-mounted in conformance with FMVSS 222. If track seating is installed, the manufacturer shall supply minimum and maximum seat spacing dimensions applicable to the bus, which comply with FMVSS 222. This information shall be on a label permanently affixed to the bus.

5. Forward most pupil seat on right side of the bus shall be located so as not to interfere with driver’s vision, not farther forward than barrier behind driver or rear of driver’s seat when adjusted to its rear-most position.
6. All seats and backs shall be a standard color unless changed by purchaser. Seat and back cushions of all seats shall be designed to safely support designated number of passengers under normal road conditions encountered in school-bus service. Coverings of seat cushions shall be of material having 42-ounce finished weight, 54-inch width, and finished vinyl coating of 1.06 broken twill or approved equal by presenting independent laboratory reports for approval.

7. Driver’s seat shall be of the high back type with a minimum seat back adjustment of 15 degrees and with a head restraint to accommodate a 95 percentile adult male (95 percentile adult male as defined in FMVSS 208). The driver’s seat shall be secured with nuts, bolts, and washers or flanged-headed nuts.

8. All restraining barriers and passenger seats shall be constructed with a material that meets the criteria contained in the School Bus Seat Upholstery Fire Block Test.

9. Crash barriers shall be placed behind driver’s seat and step well. Crash barrier shall be closed to floor level on right side or by any lift. Stanchions are not acceptable.

**Steering Wheel**

See Chassis Standard.

**Steps**

1. First step at service door shall not be less than 10 inches and not more than 14 inches from the ground measured from the **bottom** of the first step.

   A. Type D vehicles shall have the first step at the service door 12 to 16 inches from the ground measured from the bottom of the first step.

2. Service door entrance shall use a three-step step well. Risers shall be of equal height and depth. When plywood floor is used on steel, differential may be increased by thickness of plywood.

3. Steps shall be enclosed to prevent accumulation of ice and snow.

4. Steps shall not protrude beyond the side body line.

5. A suitable device (or devices) shall be designed to prevent injury or fatality to passengers from being dragged. At least one such device shall assist passengers during entry or egress, and be of such design to eliminate entanglement.

**Step Treads**
1. All steps, including floor line platform area, shall be covered with 3/16-inch rubber floor covering or other materials equal in wear and abrasion resistance to top grade rubber.

2. Metal back of tread, minimum 24-gauge cold roll steel, shall be permanently bonded to ribbed rubber; grooved design shall be such that said grooves run at 90-degree angles to long dimension of step tread.

3. Three-sixteenth-inch ribbed step tread shall have a 1 and 1/2 inch white nosing as an integral piece without any joint.

4. Rubber portion of step treads shall have the following characteristics:
   
   A. Special compounding for good abrasion resistance and high coefficient of friction.
   
   B. Flexibility so that it can be bent around a 1/2 inch mandrel both at 130 degrees Fahrenheit and 20 degrees Fahrenheit without breaking, cracking, or crazing.
   
   C. Show a durometer hardness 85 to 95.

**Stirrup Step**

There shall be one stirrup step on all Types B, C, and D buses on each side of front of body for use in cleaning windshield and lamps. There shall be one handle on each side, at least eight inches in length suitably located for driver to use while cleaning windshield and lamps. The stirrup steps and the handles shall be of rust-resistant material. Transit buses shall have provisions for cleaning the windshield. Toe eyes in the bumper with a handle(s), above the windshield, are acceptable.

**Stop Arm Signal**

The stop signal - arm(s) shall comply with the requirements of FMVSS 131.

**Stop Arm Signal - Rear (Optional)**

Rear stop arm is permissible when used in conjunction with original stop arm. Rear stop arm location on dual stop arm-equipped buses shall be on left side of bus, as close as is practical to left rear corner of body. Vacuum or air lines if used must not be readily accessible to students inside or outside of bus.

**Storage Compartment**

If tools, tire chains and/or tow chains are carried on the bus, a container of adequate strength and capacity may be provided. Such storage container may be located either inside or outside, it shall be mounted under a seat with a cover (seat cushion may not
serve as this purpose) capable of being securely latched and be fastened to the floor convenient to either the service or emergency door.

**Sun Shield**

Each Types B, C”, and D school bus shall have an interior adjustable sun visor with minimum measurements of 6 inches by 30 inches. It shall be installed *centered* immediately above the windshield and anchored on both ends, and shall be tinted transparent plastic or phlex-o-glass. On all Type A buses the sun shield shall be manufacturer’s standard.

**Tailpipe**

See Chassis Standard.

**Traction-Assisting Devices**

1. Where required or used, sanders shall:
   
   A. Be of hopper cartridge-valve type.
   
   B. Have metal hopper with all interior surfaces treated to prevent condensation of moisture.
   
   C. Be of at least 100-pound (grit) capacity.
   
   D. Have cover on filler opening of hopper, which screws into place, sealing unit airtight.
   
   E. Have discharge tubes extending to front of each rear wheel under fender.
   
   F. Have no-clogging discharge tubes with slush-proof, non-freezing rubber nozzles.
   
   G. Be operated by electric switch with telltale pilot light mounted on instrument panel.
   
   H. Be exclusively driver controlled.
   
   I. Have gauge to indicate hopper needs refilling when it is down to one quarter full.

2. Automatic traction chains may be installed.

**Trash Container and Holding Device**
1. Where required or used, the trash container shall:

   A. Be of fire resistant polyethylene or equivalent material.
   B. Be no greater than 14-quart capacity.
   C. Be secured by a holding device that is designed to prevent movement and allow easy removal and replacement.
   D. Be installed in an accessible location in the driver’s compartment, not obstructing passenger use of the service door or access to emergency equipment.

**Undercoating**

1. Entire underside of bus body, including floor sections, cross member and below floor line side panels, shall be coated with rust-proofing compound for which compound manufacturer has issued notarized certification of compliance to the bus body builder that compound meets or exceeds all performance and qualitative requirements of paragraph 3.4 of Federal Specification TT-C-250b using modified test procedures for following requirements*:

   A. Salt spray resistance-pass modified to 5% salt and 1000 hours.
   B. Abrasion resistance-pass.
   C. Fire resistance-pass.

*Test panels to be prepared in accordance with paragraph 4.6.12 of TT-C-520b with modified procedure requiring that test be made on a 48-hour air-cured film at thickness recommended by compound manufacturer.

2. Undercoating compound shall be applied with suitable airless or conventional spray equipment to recommend film thickness and shall show no evidence of voids in cured film.

**Ventilation**

1. Auxiliary fans if installed shall meet the following requirements:

   A. Fan for left and right sides shall be placed in a location where they can be adjusted for maximum effectiveness and do not obstruct vision to any mirror.

   **NOTE:** All Type A buses may be equipped with one fan.

   B. Fans shall be a nominal 6” diameter.
C. Fan blades shall be covered with a protective cage. Each fan shall be controlled by a separate switch.

2. Body shall be equipped with a suitably controlled ventilating system of sufficient capacity to maintain proper quantity of air under operating conditions, without having to open windows except in extremely warm weather.
3. Static-type non-closeable exhaust ventilation shall be installed in low-pressure area of roof.

Wheel Housing

1. The wheel housing opening shall allow for easy tire removal and service.

2. Wheel housing shall be attached to floor sheets in such a manner to prevent any dust, water or fumes from entering the body. Wheel housing shall be constructed of at least 16-gauge steel or other material of equal tensile strength.

3. The inside height of the wheel housing above the floor line shall not exceed 12 inches.

4. The wheel housing shall provide clearance for installation and use of tire chains on single and dual (if so equipped) power-driving wheels.

5. No part of a raised wheel housing shall extend into the emergency door opening.

Windshield and Windows

1. All glass in windshield, windows, and doors shall be of approved safety glass so mounted that permanent mark is visible and of sufficient quality to prevent distortion of view in any direction.

2. Glass in windshield shall be heat absorbent, laminated plate. Windshield shall be large enough to permit driver to see roadway clearly, shall be slanted to reduce glare, and shall be installed between front corner posts that are so designed and placed as to afford minimum obstruction to driver’s view of roadway. Approved acrylics may be used behind driver’s compartment.

3. All full side windows shall open vertically so as to provide an unobstructed opening of not less than 9 inches high and 22 inches wide, obtained by lowering window. Windows shall be split-sash type and so installed as to provide emergency exit. There shall be no horizontal, transit or activity-style windows in student compartment.

4. All exposed edges of glass shall be banded.
5. Windshield shall have horizontal gradient band starting slightly above line of driver’s vision and gradually decreasing in light transmission to 20 percent or less at top of windshield. **A combination tinted and shaded windshield is preferred. Buses without gradient band at top of windshield will not be accepted.**

**Windshield Washers**

A windshield washer system shall be provided that will service both windshields.

**Windshield Wipers**

All buses shall be equipped with suitable, electric windshield wipers with dual motors and switches of at least two (2) speeds so arranged as to clean the windshield both in front of the driver and on the right side of the windshield. The wipers shall clear a sufficient area whereby the driver may also see his outside rear view mirrors except where four-piece windshields are used.

**Wiring**

1. All wiring shall conform to current standards of Society of Automotive Engineers.

2. Circuits

   A. Wiring shall be arranged in circuits as required with each circuit protected by a circuit breaker. A system of color and number coding shall be used and an appropriate identifying diagram shall be provided to the end user along with the wiring diagram provided by the chassis manufacturer. **A system of color and number coding shall be used on buses. The following body interconnecting circuits shall be color coded as noted:**

<table>
<thead>
<tr>
<th>Function</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left Rear Directional Light</td>
<td>Yellow</td>
</tr>
<tr>
<td>Right Rear Directional Light</td>
<td>Dark Green</td>
</tr>
<tr>
<td>Stoplights</td>
<td>Red</td>
</tr>
<tr>
<td>Back-up Lights</td>
<td>Blue</td>
</tr>
<tr>
<td>Taillights</td>
<td>Brown</td>
</tr>
<tr>
<td>Ground</td>
<td>White</td>
</tr>
<tr>
<td>Ignition Feed, Primary Feed</td>
<td>Black</td>
</tr>
</tbody>
</table>

   The color of cables shall correspond to SAE J1128.

   B. Wiring shall be arranged in at least six regular circuits as follows:

   (1) Head, tail, stop (brake) and instrument panel lamps.
Clearance and step well lamps (step well lamp shall be actuated when service door is opened.

Dome lamp.

Ignition and emergency exits signal.

Turn signal lamps.

Alternately flashing signal lamps.

C. Any of the above combination circuits may be subdivided into additional independent circuits.

D. Each heater and defroster shall have its own circuit breaker.

E. Whenever possible, all other electrical functions (such as sanders and electric-type windshield wipers) shall be provided with independent and properly protected circuits.

F. Each body circuit shall be coded by number or letter on a diagram of circuits and shall be attached to the body in readily accessible location.

3. The entire electrical system of the body shall be designed for the same voltage as the chassis on which the body is mounted.

4. All wiring shall have an amperage capacity equal to or exceeding the designed load. All wiring splices are to be done at an accessible location and noted as splices on wiring diagram.

5. A body wiring diagram of easily readable size shall be furnished with each bus body or affixed in an area convenient to the electrical accessory control panel.

6. The body power wire shall be attached to a special terminal on the chassis.

7. All wires passing through metal openings shall be protected by a grommet.

8. Wires and tubing shall be enclosed within body panels.
SECTION IV - SPECIAL NEEDS SCHOOL BUS STANDARDS

Introduction

The specifications in this section are intended to be supplementary to specifications in the chassis and body sections. In general, specially equipped buses should meet all the requirements of those preceding sections plus those listed in this section. Since it is recognized by the entire industry that the field of special transportation is characterized by varied needs for individual cases and by a rapidly emerging technology for meeting these needs, a flexible, common-sense approach to the adoption and enforcement of specifications for these vehicles is prudent.

By federal regulation, buses, including school buses, are defined as vehicles designed to carry eleven or more (including the driver). Vehicles designed with 10 or fewer passenger positions (including the driver) cannot be certified as buses. For this reason, the federal vehicle classification Multipurpose Passenger Vehicle, or MPV, must be used by manufacturers for these vehicles in lieu of the School Bus. In determining passenger capacity, wheelchair positions are counted as passenger positions. This classification system, while requiring compliance with a less stringent set of Federal Standards for MPV’s does not preclude state or local agencies or these National Standards from requiring compliance of school bus-type MPV’s with the more stringent Federal Standards for school buses.

The following standards address modifications as they pertain to school buses that, with standard seating arrangement prior to modification, would accommodate more than 10 persons. If by addition of a power lift, mobile seating device positions or other modifications, the capacity is reduced such that vehicles become MPV’s, the intent of these standards is to have these vehicles be required to meet the same standards they would have had to meet prior to such modifications, and such MPV’s are included in all references to school buses and requirements for school buses which follow:

General Requirements

1. School buses designed for transporting students with special transportation needs shall comply with National Standards and with FMVSS applicable to their GVWR category.

2. Any school bus to be used for the transportation of children who are confined to a wheelchair or other mobile positioning device, or who require life support equipment which prohibits use of the regular service entrance, shall be equipped with a power lift, unless a ramp is needed for unusual circumstances related to passenger needs.
**Air Conditioning**

Special needs buses may be equipped with an air conditioning unit if the local education agency (LEA) desires. If the bus is equipped with air conditioning, the minimum specifications under air conditioning package on page 51 shall be met.

**Aisles**

All school buses equipped with a power lift shall provide a minimum 30-inch aisle leading from wheelchair position to at least one emergency door and the lift area.

**Communications**

All special needs school buses shall be equipped with an electronic two-way voice communication device. The system shall be provided by LEA or manufacturer.

**Crash Barriers**

1. Crash barrier shall be placed between lift and any seat position (bench seat or wheelchair position). Stanchions are not acceptable.

2. There shall be a padded crash barrier approximately 8 inches in front of the forward edge of the seat cushion of all passenger seats that do not have another seat approximately 27 inches in front of them. There shall be a padded crash barrier or seat in front of any wheelchair position unless it is contiguous with and behind another wheelchair position. The forward-most barrier on both sides of the bus shall have a full width aluminized courtesy panel extending to the floor.

**Glazing**

Tinted glazing may be installed in all doors, windows and windshield consistent with federal, state, and local regulations.

**Identification**

Buses with power lifts used for transporting physically handicapped students shall display three universal handicapped symbols located below the windowpane. Such emblems shall be white on blue background, shall not exceed 12 inches in size, and shall be of a high-intensity reflectorized material meeting U. S. Department of Transportation FHWA FP-85 Standards. Symbols shall be located on lift door, rear of bus and front bumper.
Passenger Capacity Rating

In determining the passenger capacity of a school bus for purposes other than actual passenger load (i.e., vehicle classification, or various billing/reimbursement models), any location in a school bus intended for securing an occupied wheelchair/mobility aid during vehicle operations may be regarded as four designated seating positions. Similarly, each lift area may be regarded as four designated seating positions.

**Power Lift**

1. The option shall be provided to the local purchaser to have the lift located either in front of or behind the rear wheels, on the right side of the bus, but confined within the bus body when not extended.

2. All lifts shall be fully automatic with sufficient clearances to permit a wheelchair or other mobility user to reach a securement location.

3. The design load of the lift shall be at least 600 pounds. Working parts, such as cables, pulleys, and shafts, which can be expected to wear, and upon which the lift depends for support of the load, shall have a safety factor of at least 6 (six), based on the ultimate strength of the material. Non-working parts, such as platform, frame, and attachment hardware which would not be expected to wear, shall have a safety factor of at least 3 (three), based on the ultimate strength of the material.

4. The lifting mechanism and platform shall be able to lift a minimum 800 pounds.

5. Controls shall be provided that enable the operator to activate the lift mechanism from either inside or outside the bus. The controls may be interlocked with the vehicle brakes, transmission, or door, or may provide other appropriate mechanisms or systems to ensure the vehicle cannot be moved when the lift is not stowed and so the lift cannot be deployed unless the interlocks or systems are engaged. The lift shall deploy to all levels (i.e., ground, curb, and intermediate positions) normally encountered in the operating environment. Where provided, each control for deploying, lowering, raising, and stowing the lift and lowering the roll-off barrier shall be of a momentary contact type requiring continuous manual pressure by the operator and shall not allow improper lift sequencing when the lift platform is occupied. The controls shall allow reversal of the lift operation sequence, such as raising or lowering a platform that is part way down, without allowing an occupied platform to fold or retract into the stowed position.

6. The lift shall incorporate an emergency method of deploying, lowering to ground level with a lift occupant, and raising and stowing the empty lift if the power to the lift fails. No emergency method, manual or otherwise, shall be capable of being operated in a manner that could be hazardous to the lift occupant or to the operator when operated according to manufacturer’s instructions and shall not permit the
platform to be stowed or folded when occupied. No manual emergency operation shall require more than 2 (two) minutes to lower an occupied wheelchair to ground level.

7. Platforms stowed in a vertical position, and deployed platforms when occupied, shall have provisions to prevent their deploying, falling, or folding any faster than 12 inches per second or their dropping of an occupant in the event of a single failure of any load carrying component.

8. The lift platform shall be equipped with barriers to prevent any of the wheels of a wheelchair or mobility aid from rolling off the platform during its operation. A movable barrier or inherent design feature shall prevent a wheelchair or mobility aid from rolling off the edge closest to the vehicle until the platform is in its fully raised position. Each side of the lift platform which extends beyond the vehicle in its raised position shall have a barrier a minimum 1 and 1/2 inches high. Such barriers shall not interfere with maneuvering into or out of the aisle. The loading-edge barrier (outer barrier), which functions as a loading ramp when the lift is at ground level, shall be sufficient when raised or closed, or a supplementary system shall be provided, to prevent a power wheelchair or mobility aid from riding over or defeating it. The outer barrier of the lift shall automatically raise or close, or a supplementary system shall automatically engage, and remain raised, closed, or engaged at all times that the platform is more than 3 inches above the roadway or sidewalk and the platform is occupied. Alternatively, a barrier or system may be raised, lowered, opened, closed, engaged, or disengaged by the lift operator, provided an interlock or inherent design feature prevents the lift from rising unless the barrier is raised or closed or the supplementary system is engaged.

9. The platform surface shall be free of any protrusions over 1/4 inches high and shall be slip resistant. The platform shall have a minimum clear width of 28 and 1/2 inches at the platform, a minimum clear width of 30 inches measured from 2 inches above the platform surface to 30 inches above the surface of the platform, and a minimum clear length of 48 inches measured from 2 inches above the surface of the platform to 30 inches above the surface of the platform.

10. Any openings between the platform surface and the raised barriers shall not exceed 5/8 inches in width. When the platform is at vehicle floor height with the inner barrier (if applicable) down or retracted, gaps between the forward lift platform edge and the vehicle floor shall not exceed 1/2 inches horizontally and 5/8 inches vertically.

11. The outboard entrance ramp or loading-edge barrier used as a ramp and the transition plate from the inboard edge of the platform to the vehicle floor shall not exceed a slope of 1:8, measured on level ground, for a maximum rise of three inches, and the transition from roadway or sidewalk to ramp may be vertical without edge treatment up to 1/4 inches.
Thresholds between 1/4 inches and 1/2 inches high shall be beveled with a slope no greater than 1:2.

12. The lift platform (not including the entrance ramp) shall not deflect more than three degrees (exclusive of vehicle roll or pitch) in any direction between its unloaded position and its position when loaded with 60 pounds applied through a 26” by 26” test pallet at the centroid of the platform.

13. No part of the platform shall move at a rate exceeding 6 inches per second during lowering and lifting an occupant, and shall not exceed 12 inches per second during deploying or stowing. This requirement does not apply to the deployment or stowage cycles of lifts that are manually deployed or stowed. The maximum platform horizontal and vertical acceleration when occupied shall be 0.3 g.

14. The lift shall permit both inboard and outboard facing of wheelchair and mobility aid users.

15. Lifts shall accommodate persons using walkers, crutches, canes or braces, or who otherwise have difficulty using steps. The platform may be marked to indicate a preferred standing position.

16. Platforms on lifts shall be equipped with handrails on two sides, which move in tandem with the lift, and which shall be graspable and provide support to standees throughout the entire lift operation. Handrails shall have a usable component at least 8 inches long with the lowest portion a minimum 30 inches above the platform and the highest portion a maximum 38 inches above the platform. The handrails shall be capable of withstanding a force of 100 pounds concentrated at any point on the handrail without permanent deformation of the rail or its supporting structure. The handrails shall have a cross-sectional diameter between 1 and 1/4 inches and 1 and 1/2 inches or shall provide an equivalent grasping surface, and have eased edges with corner radii of not less than 1/8 inches. Handrails shall be placed to provide a minimum 1 and 1/2” knuckle clearance from the nearest adjacent surface. Handrails shall not interfere with wheelchair or mobility aid maneuverability when entering or leaving the vehicle.

17. A re-settable circuit breaker shall be installed between power source and lift motor if electrical power is used. It shall be located as close to the power source as possible, but not within the passenger/driver compartment.

18. Lift design shall prevent excessive pressure that could damage the lift system when the platform is fully lowered or raised, or that could jack the vehicle.

19. The following information shall be provided with each vehicle equipped with a lift:
A. A phone number where information can be obtained about installation, repair, and parts. (Detailed written instructions and a parts list shall be available upon request.)

B. Detailed instructions regarding use of the lift and readily visible when the lift door is open, including a diagram showing the proper placement and positioning of wheelchair/mobility aids on lift.

20. The lift manufacturer shall make available training materials to ensure the proper use and maintenance of the lift. These may include instructional videos, classroom curriculum, system test results, or other related materials.

21. Each lift shall be permanently and legibly marked or incorporate a non-removable label or tag which states that it conforms to all applicable requirements of the current National Standards for School Buses. In addition, the lift manufacturer, or an authorized representative, upon request of the original titled purchaser, shall provide a Notarized Certificate of Conformance, either original or photocopied, which states that the lift system meets all the applicable requirements of the current National Standards for School Buses.

Ramp

Emergency ramps may be used with prior approval from the SDE.

Regular Service Entrance

1. Steps

   A. First step at service door shall be not less than 10 inches and not more than 14 inches from ground when measured from the bottom of the step based on standard chassis specifications.

      (1) Type D vehicle shall have the first step at the service door 12 to 16 inches from the ground.

2. Service door entrance shall use three-step step well. Risers shall be of equal height and depth. When plywood floor is used on steel, differential may be increased by thickness of plywood.

3. Steps shall be enclosed to prevent accumulation of ice and snow.

4. Steps shall not protrude beyond side body line.
5. Grab handle not less than 20 inches in length shall be provided in an unobstructed location inside doorway.

**Restraining Devices**

1. On power-lift equipped vehicles, seat frames may be equipped with attachments or devices to which belts, restraining harnesses or other devices may be attached. Attachment framework or anchorage devices, if installed, shall conform to FMVSS 210.

2. Seat belt assemblies shall be installed on special needs buses, and shall conform to FMVSS 209. Seat belt assemblies shall be color-coded and installed by the manufacturer based on seating capacity.

3. Child restraint systems, which are used to facilitate the transportation of children who in other modes of transportation would be required to use a child, infant, or booster seat, shall conform to FMVSS 213 and 222.

**Seating Arrangements**

Flexibility in seat spacing to accommodate special circumstances shall be permitted to meet passenger requirements. All seating shall be forward facing.

**Securement and Restraint System for Wheelchair/Mobility Aid and Occupant**

For purposes of better understanding the various aspects and components of this section, the term securement or phrase securement system is used exclusively in reference to the device(s) which secure the wheelchair/mobility aid. The term restraint or phase restraint system is used exclusively in reference to the device(s) used to restrain the occupant of the wheelchair/mobility aid. The phrase securement and restraint system is used to refer to the total system which secures and restrains both the wheelchair/mobility aid and the occupant.

1. Securement and restraint system--general

   A. The Wheelchair/Mobility Aid Securement and Occupant Restraint System shall be designed, installed, and operated to accommodate passengers in a forward-facing orientation within the bus and shall comply with all applicable requirements of FMVSS 222. Gurney-type devices shall be secured parallel to the side of each bus.

   B. The securement and restraint system, including the system track, floor plates, pockets, or other anchorage shall be provided by the same manufacturer, or be certified to be compatible by manufacturers of all equipment/systems used.
C. When a wheelchair/mobility aid securement device and an occupant restraint share a common anchorage, including occupant restraint designs that attach the occupant restraint to the securement device or the wheelchair/mobility aid, the anchorage shall be capable of withstanding the loads of both the securement device and occupant restraint applied simultaneously, in accordance with FMVSS 222 (see Sections 2 and 3 of this section).

D. When a wheelchair/mobility aid securement device (webbing or strap assembly) is shared with an occupant restraint, the wheelchair/mobility aid securement device (webbing or strap assembly) shall be capable of withstanding a force twice the amount as specified in Section 4.4(a) of FMVSS 209 (see Sections 2 and 3 of this section).

E. The bus body floor and sidewall structures where the securement and restraint system anchorages are attached shall have equal or greater strength than the load requirements of the system(s) being installed.

F. The occupant restraint system shall be designed to be attached to the bus body either directly or in combination with the wheelchair/mobility aid securement system, by a method which prohibits the transfer of weight or force from the wheelchair/mobility aid to the occupant in the event of an impact.

G. When an occupied wheelchair/mobility aid is secured in accordance with the manufacturer’s instructions, the securement and restraint system shall limit the movement of the occupied wheelchair/mobility aid to no more than 2 inches in any direction under normal driving conditions.

H. The securement and restraint system shall incorporate an identification scheme which will allow for the easy identification of the various components and their functions. It shall consist of one of the following, or combination thereof:

   (1) The wheelchair/mobility aid securement (webbing or strap assemblies) and the occupant restraint belt assemblies shall be of contrasting color or color shade.

   (2) The wheelchair/mobility aid securement device (webbing or strap assemblies) and occupant restraint belt assemblies shall be clearly marked to indicate the proper wheelchair orientation in the vehicle, and the name and location for each device or belt assembly; i.e., front, rear, lap belt, shoulder belt.

I. All attachment or coupling devices designed to be connected or disconnected frequently shall be accessible and operable without the use of tools or other mechanical assistance.
J. The securement and restraint system hardware and components shall be free of sharp or jagged areas and shall be of a non-corrosive material or treated to resist corrosion in accordance with Section 4.3(a) of FMVSS 209.

K. The securement and restraint system shall be located and installed such that when an occupied wheelchair/mobility aid is secured, it does not block access to the lift door or emergency door.

L. A device for storage of the securement and restraint system may be provided. When the system is not in use, the storage device shall allow for clean storage of the system, shall keep the system securely contained within the passenger compartment, shall provide reasonable protection from vandalism, and shall enable the system to be readily accessed for use.

M. The entire securement and restraint system, including the storage device, shall meet the flammability standards established in FMVSS 302.

N. Each securement device (webbing or strap assembly) and restraint belt assembly shall be permanently and legibly marked or incorporate a non-removable label or tag which states that it conforms to all applicable FMVSS requirements. In addition, the system manufacturer, or an authorized representative, upon request by the original titled purchaser, shall provide a notarized Certificate of Conformance, either original or photocopied, which states that the wheelchair/mobility aid securement and occupant restraint system meets all of the requirements as specified in FMVSS 222.

O. The following information shall be provided with each vehicle equipped with a securement and restraint system:

(1) A phone number where information can be obtained about installation, repair, and parts. (Detailed written instructions and a parts list shall be available upon request.)

(2) Detailed instructions regarding use, including a diagram showing the proper placement of the wheelchair/mobility aids and positioning of securement devices and occupant restraints, including correct belt angles.

P. The system manufacturer shall make available training materials to ensure the proper use and maintenance of the wheelchair/mobility aid securement and occupant restraint system. These may include instructional videos, classroom curriculum, system test results, or other related materials.

2. Wheelchair/mobility aid securement system
A. Each securement system location shall consist of a minimum of four anchorage points. A minimum of two anchorage points shall be located in front of the wheelchair/mobility aid and a minimum of two anchorage points shall be located in the rear. The securement anchorages shall be attached to the floor of the vehicle and shall not interfere with passenger movement or present any hazardous condition.

B. Each securement system location shall have a minimum clear floor area of 30” x 48”. Additional floor area may be required for some applications. Consultation between the user and the manufacturer is recommended to ensure adequate area is provided.

C. The securement system shall secure common wheelchair/mobility aids and shall be able to be attached easily by a person having average dexterity and who is familiar with the system and wheelchair/mobility aid.

D. As installed, each securement anchorage shall be capable of withstanding a minimum force of 3,000 pounds (13,344 Newtons) when applied as specified in FMVSS 222. When more than one securement device share a common anchorage, the anchorage shall be capable of withstanding the force indicated above, multiplied by the number of securement devices sharing that anchorage.

E. Each securement device, if incorporating webbing or a strap assembly, shall comply with the requirements for Type 1 safety belt systems, in accordance with Sections 4.2, 4.3, and 4.4(a) of FMVSS 209.

F. The securement system shall secure the wheelchair/mobility aid in such a manner that the attachments or coupling hardware will not become detached when any wheelchair/mobility aid component deforms, when one or more tires deflate, and without intentional operation of a release mechanism (e.g., a spring clip on a securement hook).

G. Each securement device (webbing or strap assembly) shall be capable of withstanding a minimum force of 2,500 pounds when tested in accordance with FMVSS 209.

H. Each securement device (webbing or strap assembly) shall provide a means of adjustment, of manufacturer’s design, to remove slack from the device or assembly.

3. Occupant restraint system

A. A Type II-A occupant restraint system which meets all applicable requirements of FMVSS 209 and 210 shall provide for restraint of the occupant.
B. The occupant restraint system shall be made of materials which do not stain, soil, or tear an occupant’s clothing, and which are resistant to water damage and fraying.

C. Each restraint system location shall have not less than one anchorage, of manufacturer’s design, for the upper end of the upper torso restraint.

(1) The anchorage for each occupant’s upper torso restraint shall be capable of withstanding a minimum force of 1,500 pounds (6,672 Newtons) when applied as specified in FMVSS 222.

D. Each wheelchair/mobility aid location shall have not less than two floor anchorages for the occupant pelvic and the connected upper torso restraint.

(1) Each floor anchorage shall be capable of withstanding a minimum force of 3,000 pounds (13,344 Newtons) when applied as specified in FMVSS 222.

(2) When more than one occupant restraint share a common anchorage, the anchorage shall be capable of withstanding a minimum force of 3,000 pounds (13,344 Newtons) multiplied by the number of occupant restraints sharing the common anchorage in accordance with FMVSS 222.

E. Each floor and wall anchorage which secures the occupant restraint to the vehicle and which is not permanently attached, shall be of a “positive latch” design, and shall not allow for any accidental disconnection.

**Special Light**

Doorways in which lifts are installed, shall have, when lift is to be used, at least 2 foot-candles of illumination measured on the floor of the bus immediately adjacent to the lift, and on the lift, when deployed at the vehicle floor level. Any lighting used during lift operations shall remain lit whenever door is open.

**Special Service Entrance**

1. Power lift equipped bodies shall have a special service entrance to accommodate the power lift.

2. The special service entrance and door shall be located on the right side of the bus and shall be designed so as not to obstruct the regular service entrance.

3. The opening may extend below the floor through the bottom of the body skirt. If such an opening is used, reinforcements shall be installed at the front and rear of the floor opening to support the floor and give the same strength as other floor openings.
4. A drip molding shall be installed above the opening to effectively divert water from entrance.

5. Door posts and headers from entrance shall be reinforced sufficiently to provide support and strength equivalent to the areas of the side of the bus not used for special service entrance.

**Special Service Entrance Doors**

1. A single door or double doors may be used for the special service entrance.

2. A single door shall be hinged to the forward side of the entrance unless doing so would obstruct the regular service entrance. If, due to the above condition, the door is hinged to the rearward side of the doorway, the door shall utilize a safety mechanism which will prevent the door from swinging open should the primary door latch fail. If double doors are used the system shall be designed to prevent the door(s) from being blown open by the wind resistance created by the forward motion of the bus, and/or incorporate a safety mechanism to provide secondary protection should the primary latching mechanism(s) fail.

3. All doors shall have positive fastening devices to hold doors in the open position.

4. All doors shall be weather sealed on buses with double doors. They shall be so constructed that a flange on the forward door overlaps the edge of the rear door when closed.

5. When manually operated dual doors are provided, the rear door shall have at least a one-point fastening device to the header. The forward-mounted door shall have at least three-point fastening devices. One shall be to the header, one to the floor line of the body, and the other shall be into the rear door. The door and hinge mechanism shall be of a strength that is greater than or equivalent to the emergency exit door.

6. Door materials, panels and structural strength shall be equivalent to the conventional service and emergency doors. Color, rub rail extensions, lettering and other exterior features shall match adjacent sections of the body.

7. Each door shall have windows set in rubber which are visually similar in size and location to adjacent non-door windows. Glazing shall be of same type and tinting (if applicable) as standard fixed glass in other body location.

8. Door(s) shall be equipped with a device that will actuate a flashing visible signal located in the driver’s compartment when the door(s) is open and ignition is in “on” position.
9. A switch shall be installed so that the lifting mechanism will not operate when the lift platform door(s) is closed.

10. Special service entrance doors shall be equipped with padding at the top edge of the door opening. Pad shall be at least three inches wide and one inch thick and extend the full width of the door opening.

**Support Equipment and Accessories**

1. Each bus which is set up to accommodate wheelchair/mobility aids or other assistive or restraint devices which utilize belts, shall contain at least one belt cutter properly secured in a location within reach of the driver while belted into his/her driver’s seat. The belt cutter shall be durable and designed to eliminate the possibility of the operator or others being cut during use.

2. Special equipment or supplies which are used on the bus for mobility assistance, health support, or safety purposes shall meet any local, federal, or engineering standards which may apply, including proper identification.

   Equipment which may be used for these purposes includes, but is not limited to:

   A. Wheelchairs and other mobile seating devices (see section on Securement System for Mobile Seating Devices/Occupant).

   B. Crutches, walkers, canes, and other ambulating devices.

   C. Medical support equipment. This may include respiratory devices such as oxygen bottles (which should be no larger than 22 cubic feet for liquid oxygen and 38 cubic feet for compressed gas), or ventilators. Tanks and valves should be located and positioned to protect them from direct sunlight, bus heater vents, or other heat sources. Other equipment may include intravenous, and fluid drainage apparatus. Appropriate medical placarding if needed shall be added by the LEA.

3. All portable equipment and special accessory items, including the equipment listed above, shall be secured at the mounting location to withstand a pulling force of five times the weight of the item, or shall be retained in an enclosed, latched compartment. The compartment shall be capable of withstanding forces applied to its interior equal to five times the weight of its contents without failure to the box’s integrity and securement to the bus. Exception: If these standards provide specific requirements for securement of a particular type of equipment, the specific standard shall prevail (i.e., wheelchairs).
SECTION V - ALTERNATE FUEL SOURCE STANDARDS

1. The guidelines contained herein shall pertain only to the school buses approved by the Alabama State Board of Education to operate on alternative fuel sources and which meet the safe operation requirements of paragraph B-1.

   A. Any company or individual servicing conversion equipment to school districts shall provide an approved certification program covering installation, personnel training, maintenance, repair, trouble-shooting and safety procedures for each responsible mechanic; to assure that conversion and maintenance is performed only by personnel certified by the Alabama LP-Gas Board or other approved agency.

   B. These companies or individuals shall submit to the Alabama State Department of Education, Pupil Transportation Section, Montgomery, Alabama 36130, documentation certifying that the requirements of 1-A have been met.

SECTION VI - OPTIONS

Lock Gas Compartment Door

Provide at the option of the purchaser a lock and key to secure the gas compartment door.

Storage Compartment for Required Emergency Equipment

This compartment shall be located in the driver’s compartment to house the emergency equipment. It shall be a locked compartment with a warning buzzer attached so as to activate when the ignition switch is on and the compartment is locked.
**ALABAMA MINIMUM SPECIFICATIONS QUICK REFERENCE CHART**

**ANY BUS ABOVE 84-PASSENGER CAPACITY REQUIRES PRIOR SDE APPROVAL.**

**TYPE A-I SCHOOL BUS**  
(12,500 pounds and over)

<table>
<thead>
<tr>
<th>CAPACITY</th>
<th>BRAKE LINING SIZE</th>
<th>GAWR FRONT</th>
<th>GAWR REAR</th>
<th>GVWR TOTAL</th>
<th>TIRE SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-47</td>
<td>4” Front 6” Rear</td>
<td>9,000</td>
<td>14,200</td>
<td>23,200</td>
<td>10:00 x 22.5 10 ply</td>
</tr>
</tbody>
</table>

**TYPE A-II SCHOOL BUS (12,500 pounds and under)**

**TO MANUFACTURER'S SPECIFICATIONS**

**TYPE B SCHOOL BUS**

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8-46</td>
<td>4” Front 6” Rear</td>
<td>9,000</td>
<td>14,200</td>
<td>23,200</td>
<td>10:00 x 22.5 10 ply</td>
</tr>
<tr>
<td>47-54</td>
<td>4” Front 6” Rear</td>
<td>9,000</td>
<td>16,000</td>
<td>25,000</td>
<td>10:00 x 22.5 10 ply</td>
</tr>
<tr>
<td>55-72</td>
<td>4” Front 7” Rear</td>
<td>9,000</td>
<td>17,500</td>
<td>26,500</td>
<td>10:00 x 22.5 12 ply</td>
</tr>
</tbody>
</table>

MAXIMUM WHEELBASE 254” ON 72-PASSENGER OR BELOW

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>73-84</td>
<td>4” Front 7” Rear</td>
<td>10,000</td>
<td>19,800</td>
<td>29,800</td>
<td>11:00 x 22.5 12 ply</td>
</tr>
</tbody>
</table>

73-84-PASSENGER TO BE BUILT ON 276” WHEELBASE

**TYPE C SCHOOL BUS**

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8-47</td>
<td>4” Front 6” Rear</td>
<td>9,000</td>
<td>14,200</td>
<td>23,200</td>
<td>10:00 x 22.5 10 ply</td>
</tr>
<tr>
<td>48-54</td>
<td>4” Front 6” Rear</td>
<td>9,000</td>
<td>16,000</td>
<td>25,000</td>
<td>10:00 x 22.5 10 ply</td>
</tr>
<tr>
<td>55-72</td>
<td>4” Front 7” Rear</td>
<td>9,000</td>
<td>17,500</td>
<td>26,500</td>
<td>10:00 x 22.5 12 ply</td>
</tr>
</tbody>
</table>

**TYPE D FRONT ENGINE**

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8-53</td>
<td>4” Front 6” Rear</td>
<td>10,800</td>
<td>17,000</td>
<td>27,800</td>
<td>10:00 x 22.5 10 ply</td>
</tr>
<tr>
<td>54-66</td>
<td>5” Front 7” Rear</td>
<td>11,000</td>
<td>17,000</td>
<td>28,000</td>
<td>10:00 x 22.5 10 ply</td>
</tr>
<tr>
<td>68-78</td>
<td>5” Front 7” Rear</td>
<td>11,000</td>
<td>19,000</td>
<td>30,000</td>
<td>11:00 x 22.5 12 ply</td>
</tr>
<tr>
<td>79-84</td>
<td>6” Front 8” Rear</td>
<td>13,000</td>
<td>20,000</td>
<td>33,000</td>
<td>11:00 x 22.5 14 ply</td>
</tr>
</tbody>
</table>

**TYPE D REAR ENGINE**

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8-71</td>
<td>6” Front 7” Rear</td>
<td>12,000</td>
<td>20,000</td>
<td>32,000</td>
<td>11:00 x 22.5 14 ply</td>
</tr>
<tr>
<td>72-84</td>
<td>6” Front 7” Rear</td>
<td>12,000</td>
<td>23,000</td>
<td>35,000</td>
<td>11:00 x 22.5 14 ply</td>
</tr>
</tbody>
</table>

57