SECTION I - GENERAL PROVISIONS

Standards

1. All school buses ordered by local education agencies beginning November 1, 2001, shall (1) meet the applicable Federal Motor Vehicle Safety Standards (FMVSS), and (2) meet Alabama minimum specifications for school buses. In the event of a conflict between the requirements of an applicable Federal Motor Vehicle Safety Standard, as referred to in this section, and the Alabama minimum specifications, the requirements of the FMVSS shall control. School buses not meeting minimum specifications will not be certified by the Alabama State Department of Education (SDE).

Certification

2. All school bus manufacturers shall certify to the SDE, in the form of a certification plate mounted in the driver's compartment in the vehicle, that all school buses meet or exceed all standards as specified herein and are in compliance with the applicable FMVSS. All manufacturers shall certify to the State of Alabama and local education agencies that all components on school buses are new from bumper to bumper at time of delivery. All chassis and body information shall be mounted on a certification plate.

Used School Buses

3. Used school buses purchased for use by a school system in Alabama shall meet all of the legal Federal and Alabama requirements for school buses that were in effect on the date the vehicle was manufactured.

Bid Requirements

4. In order to be in compliance with the State Bid Law, school bus purchases shall be by competitive bidding. Bid forms to the body manufacturer shall contain certain options required by the chassis manufacturer, which may result in changes in normal Gross Vehicle Weight Rating (GVWR) or alterations to the body. The school bus body manufacturer shall submit floor plans at the time bid quotations are submitted showing:

1. Location of the emergency door, emergency windows and roof hatches.

2. Aisle and staging areas.

5. Service Manual/Diagnostic Equipment

Body and/or chassis suppliers, including integral (forward control) suppliers, shall provide each school district purchasing school buses with one complete set of the most current service manuals available to include both body and chassis at no
additional cost upon delivery of bus. Diagnostic equipment (manuals, code books, software and training) shall be made available to local school systems at time of bid opening.

6. **New Technology**

New technology not in the present specifications shall have prior written approval from the SDE School Bus Specifications Committee.

7. **School Bus Definitions**

TYPE A: A Type A school bus is a conversion or body constructed upon a van-type or cutaway front-section vehicle with a left side driver’s door designed for carrying more than 10 persons. This definition shall include two classifications: *Type A-I with a GVWR of 10,000 or under; and Type A-II, with a GVWR over 10,000 pounds.* All Type A buses shall have dual rear wheels. *Type A buses under 14,500 pounds GVWR shall have four-wheel disc brakes.*

Type A buses exceeding a GVWR of 14,500 pounds shall have air brakes.

TYPE B: A Type B school bus is a conversion or body constructed and installed upon a van or front-section vehicle chassis, or stripped chassis, with a GVWR of more than 10,000 pounds and designed for carrying more than 10 persons. Part of the engine is beneath and/or behind the windshield and beside the driver's seat. The entrance door is behind the front wheels. *All Type B buses 14,500 pounds or under shall have four-wheel disc brakes.*

TYPE C: A Type C school bus is a body installed upon a flat back cowl chassis with a GVWR of more than 10,000 pounds and designed for carrying more than 10 persons. The entire engine is in front of the windshield and the entrance door is behind the front wheels. *Type C buses may not exceed 72-passenger capacity without prior, written SDE approval.*

TYPE D: A Type D school bus is a body installed upon a chassis, with the engine mounted in the front, midship, or rear, with a gross vehicle weight rating of more than 10,000 pounds and designed for carrying more than 10 persons. The engine may be behind the windshield and beside the driver's seat, at the rear of the bus, behind the rear wheels, or midship between the front and rear axles. The entrance door is ahead of the front wheels. *Type D buses may not exceed 84-passenger capacity without prior, written SDE approval.*
SECTION II - SCHOOL BUS CHASSIS STANDARDS

Air Cleaner

1. The engine intake air cleaner shall be furnished and properly installed by the chassis manufacturer to meet engine specifications.

 The intake air system for diesel engines shall have an air cleaner restriction indicator properly installed by the chassis manufacturer to meet engine specifications.

Axles

1. The front axle shall be a wide-track, heavy-duty type or shall have a GVWR at ground equal to or exceeding that portion of the total load, which is supported by the front axle.

2. The rear axle shall be a full-floating, heavy-duty type and shall have a GVWR at ground equal to or exceeding that portion of the total load, which is supported by the rear axle. A small vehicle rear axle may be semi-floating. A diesel-powered vehicle rear axle ratio shall meet manufacturer's recommendations.

3. Vehicle minimum axle capacities at ground when loaded shall meet the body manufacturer's GVWR specified by the FMVSS. Axle assemblies shall have minimum capacities at ground as shown on the chart on the last page of this booklet.

Brakes

1. A braking system, including service brake and parking brake, shall be provided. All Type A school buses shall be built to manufacturer’s specifications.

2. Buses using air or vacuum in the operation of the brake system shall be equipped with warning signals, readily audible and visible to the driver, that will give a continuous warning when the air pressure available in the system for braking is 60 psi (pounds per square inch) or less or the vacuum in the system available for braking is eight (8) inches of mercury or less. An illuminated mechanical gauge that will indicate to the driver the air pressure in pounds per square inch or the inches of mercury vacuum available for the operation of the brakes shall be provided.

3. Antilock brake systems for either air or hydraulic brakes shall include control of all axles in compliance with FMVSS 105 or 121.

 A. Air brakes shall be installed on all chassis exceeding 14,500 pounds GVWR. All air-operated brake systems shall:

 (1) Meet all FMVSS for air brakes.
(2) Be S-cam type brakes on all wheels. The camshaft, when applying brakes, shall rotate in the same direction as the wheels. Automatic slack adjusters shall be the same design on all wheels. Dust covers shall be installed on all wheels unless deleted through local option at the time of the bid.

(3) Have at least a 12 CFM air compressor.

(4) Be equipped with a parking and emergency brake. A manual control, clearly identified, shall be within easy reach of the driver.

(5) Have brake lining sizes as shown on the chart on the last page of this booklet.

(6) Have a reservoir capacity, which is equal to or greater than two (2) times total volume of all brake activators at full travel.

(7) Have air dryers installed. (Bendix AD-9, Midland DA33100 or prior written approved equal)

B. Buses using a hydraulic assist-booster in the operation of the brake system shall be equipped with warning signals, readily audible and visible to the driver, that will provide continuous warning in the event of a loss of fluid flow from the primary source, or loss of electric source powering the back-up system.

(1) The system shall be equipped with a source of hydraulic pressure, automatically initiated upon loss of power from primary source, and operating independently of the primary power source.

(2) All brake systems shall be designed to permit visual inspection of brake lining wear without the removal of any chassis components.

Bumper, Front

1. The front bumper shall be furnished by the chassis manufacturer as part of the chassis on Type A, B, and C buses unless energy absorbing or other bumper options necessitate installation by the body manufacturer. When Type D chassis are supplied to a body company by a chassis manufacturer, the body company shall supply the front bumper as part of the body installation.

2. Unless an energy-absorbing bumper is used, the front bumper shall be of pressed steel channel or equivalent material at least 1/4 inch thick and not less than 8 inches wide (high) and shall extend beyond forward-most part of the body, grille, hood, and fenders and shall extend to outer edges of the fenders at the bumper's top line. Type D buses may use 3/16 inch front bumper, if all areas of Item #4 are met by the bus manufacturer.
3. Tow eyes or hooks shall be furnished and attached so as not to project beyond the front bumper. Tow eyes or hooks attached to the frame chassis shall be furnished by the chassis manufacturer. This installation shall be in accordance with the chassis manufacturer's standards. Type A buses are exempt from tow hook requirements.

4. The bumper shall be designed or reinforced so that it will not deform when the bus is lifted by a chain that is passed under the bumper (or through the bumper if holes are provided for this purpose) and attached to both tow eyes. For the purpose of meeting this standard, the bus shall be empty and positioned on a level, hard surface, and both tow eyes shall share the load equally.

Certification

The chassis manufacturer shall certify to the SDE and local education agency having pupil transportation jurisdiction that their product meets minimum standards on items not covered by certification issued under requirements of the National Traffic and Motor Vehicle Safety Act.

Color

1. The chassis, including the front bumper, shall be black. The hood, cowl and fenders shall be in national school bus yellow. The hood may be painted with non-reflective paint.

2. *Wheel rims shall be painted black on all buses.*

Directional Lights

1. Each Type C chassis shall be equipped with Type A front directional lights of the two-faced type mounted either on the top of the fender or hood side panel.

Drive Shaft

1. Torque capacity of the drive shaft assembly shall at least equal maximum engine torque as developed through lowest transmission gear reduction.

2. Each drive shaft shall be equipped with protective metal guard or guards to reduce the possibility of it whipping through the floor or dropping to ground if broken. (Body manufacturer is responsible for Mini Bus.)

Electrical System

1. Battery

 A. The storage batteries shall have a minimum of 1,250 cold cranking amps at 0 degrees Fahrenheit. Type A buses shall be built to manufacturer’s specifications.
B. Since all batteries in Type B, C, and D buses are to be located in a sliding tray, the battery shall be temporarily mounted on the chassis frame by the chassis manufacturer.

In these cases, the final location of the battery and the appropriate cable lengths shall be according to the current SBMTC Design Objectives.

2. Alternator

A. All Type A and B buses up to 15,000 lbs. GVWR shall have a minimum 100 amperes alternator.

B. Type B buses over 15,000 lbs. GVWR and all C and D buses shall be equipped with a heavy-duty truck or bus-type alternator meeting SAE J 180 and having a minimum output rating of 120 amperes; The alternator shall be capable of producing a minimum of 50 percent of its maximum rated output at the engine manufacturer's recommended idle speed.

C. All buses equipped with an air conditioner or electrical power lift shall have a minimum 124 amperes alternator.

D. A direct-drive alternator is permissible in lieu of a belt drive. A belt drive shall be capable of handling the rated capacity of the alternator with no detrimental effect on other driven components.

E. Refer to SBMTC Design Objectives, 1996 edition, for estimating required alternator capacity.

3. Wiring

A. All wiring shall conform to current applicable recommended practices of the Society of Automotive Engineers.

(1) All wiring shall use standard colors and number coding and each chassis shall be delivered with a wiring diagram that coincides with the wiring of the chassis.

B. The chassis manufacturer shall install a readily accessible terminal strip or plug on the body side of the cowl, or at an accessible location in the engine compartment of vehicles designed without a cowl, that shall contain the following terminals for the body connections:

(1) Main 100-amp body circuits
(2) Tail lamps
(3) Right turn signal
(4) Left turn signal
(5) Stop lamps
(6) Back-up lamps
(7) Instrument panel lights (rheostat controlled by head lamp switch)

4. Circuits

A. An appropriate identifying diagram (color and number coded) for electrical circuits shall be provided to the body manufacturer for distribution to the end user.

B. The headlight system shall be wired separately from the body-controlled solenoid.

Engine

1. The chassis shall be equipped with a diesel engine of minimum size:

 - 29 to 60 passengers--170 hp motor minimum
 - 65 and above passengers--185 hp motor minimum
 - Types A and B under 29 passenger--manufacturer's specifications

2. The engine heater may be installed as per the manufacturer's specifications.

Exhaust System

1. The exhaust pipe, muffler, and tail pipe shall be outside the bus body and attached to the chassis frame. The tail pipe shall extend at least five inches beyond the chassis frame through the left or right side of the rear bumper not more than two and not less than one inch. Type A vehicles may have manufacturer's standard exhaust system.

2. The muffler and the tail pipe shall be constructed of aluminized, or equivalent corrosion-resistant material. The tail pipe shall be made of at least 16-gauge material and shall be mounted in such a way that it will not cause damage to brake lines.

3. The exhaust pipe shall be properly insulated from the fuel tank and connections thereof by a metal shield at any point where it is four inches or less from tank or connections.

4. The exhaust system on vehicles designed for the transportation of special needs pupils shall be routed **to the left of the left frame rail** to allow for the installation of a lift on the right side of the vehicle.
5. On Types B, C and D buses, no exhaust pipe shall exit beneath an emergency exit or the fuel fill.

6. Type D rear engine exhaust shall exit beneath the rear bumper to manufacturer’s specifications.

Fenders, Hoods--Types B and C Vehicles

1. The total spread of outer edges of front fenders, measured at the fender line, shall exceed the total spread of the front tires when the front wheels are in a straight-ahead position.

2. Front fenders shall be properly braced and free from any body attachments.

3. A fiberglass tilt hood shall be provided. The hood opening and closing effort shall be minimized to aid the driver with pre-trip inspections and service. If the hood is not designed to remain secure in the open position, a safety prop will be required. The wiring harness shall be a “quick disconnect” type to aid with servicing.

Frame

1. The frame or equivalent shall be of such design and strength characteristics as to correspond at least to standard practice for trucks of the same general load characteristics, which are used for highway service.

2. Any secondary manufacturer that modifies the original chassis frame shall guarantee the performance of workmanship and materials resulting from such modification.

3. Any frame modification shall not be for the purpose of extending the wheelbase.

4. Holes in top or bottom flanges or side units of the frame, and welding to the frame, shall not be permitted except as provided or accepted by the chassis manufacturer.

5. Frame lengths shall be provided in accordance with current SBMTC Design Objectives.

Fuel Tank

1. All Types B, C, and D chassis above 170-inch wheelbase shall have a minimum 60-gallon fuel tank with a 55-gallon actual draw. The tank shall be filled and vented to the outside of the body, the location of which shall be so that accidental fuel spillage will not drip or drain on any part of the exhaust system.

2. No portion of the fuel system, which is located to the rear of the engine compartment, except the filler tube, shall extend above the top of the chassis frame.
rail. Fuel lines shall be mounted to obtain maximum possible protection from the chassis frame.

3. Separate primary and secondary fuel filters each with replaceable spin on element shall be installed between the fuel tank and the engine. At least one fuel filter shall be of the water separator type, RACOR Model # 325R, RACOR 31202 or prior approved equal. All buses with a GVWR of 14,500 pounds or less may have chassis or engine manufacturers standard fuel/water separator and fuel filter.

4. Fuel tank installation shall be in accordance with current SBMTC Design Objectives for location on the chassis right frame rail or between frame rails; the filler tube shall be located on the right side of the bus.

5. Type A buses may meet manufacturer's specifications.

6. The fuel tank on vehicles constructed with a power lift unit may be mounted on left chassis rail or behind rear wheels.

7. Installation of alternative fuel tanks shall comply with all applicable fire codes.

8. On Types B, C, and D vehicles, fuel tanks shall have interior baffles to help prevent buses from fuel starvation on inclines.

Governor

1. An engine governor is permissible. When it is desired to limit road speed, a road speed governor should be installed.

2. When the engine is remotely located from the driver, a governor shall be installed to limit engine speed to maximum revolutions per minute recommended by the engine manufacturer, or a tachometer shall be installed so the engine speed may be known to the driver.

Heating System, Provision for

1. The chassis engine shall have plugged openings for the purpose of supplying hot water for the bus heating system. The opening shall be suitable for attaching a pipe thread/hose connector. The engine shall be capable of supplying water having a temperature of at least 170 degrees Fahrenheit at a flow rate of 50 pounds/minute at the return end of 30 feet of one inch inside diameter automotive hot water heater hose (SBMI Standard No. 001--Standard Code for Testing and Rating Automotive Bus Hot Water Heating and Ventilating Equipment).
Horn

Buses shall be equipped with a horn or horns of standard make with each horn capable of producing a complex sound in bands of audio frequencies between 250 and 2,000 cycles per second and tested per the Society of Automotive Engineers Standard J--377. There shall be no air horns.

Instruments and Instrument Panel

1. Chassis shall be equipped with the following instruments and gauges (lights in lieu of gauges are not acceptable except as noted):

 A. Speedometer

 B. Odometer, which will give, accrued mileage (to seven digits) including tenths of miles

 C. Tachometer

 D. Voltmeter

 (1) An ammeter with graduated charge and discharge with the ammeter and its wiring compatible with generating capacities is permitted in lieu of a voltmeter

 E. Oil-pressure gauge

 F. Water temperature gauge

 G. Fuel gauge

 H. Upper beam headlight indictor

 I. Brake indicator gauge (vacuum or air)

 (1) A light indicator in lieu of a gauge is permitted on vehicles equipped with hydraulic-over-hydraulic brake system

 J. Turn signal indicator

 K. Glow-plug indicator light where appropriate

 L. A twelve-volt accessory outlet with cover

2. All instruments shall be easily accessible for maintenance and repair.
3. Instruments and gauges shall be mounted on the instrument panel in such a manner that each is clearly visible to the driver while in a normal seated position in accordance with current SBMTC Design Objectives.

4. The instrument panel shall have lamps of sufficient candlepower to illuminate all instruments and gauges and the shift selector indicator for an automatic transmission.

Oil Filter

An Oil filter with replaceable element shall be provided and connected by flexible oil lines if it is not of built-in or engine-mounted design. The oil filters shall have a capacity of at least one (1) quart.

Openings

All openings in the floorboard or firewall between the chassis and the passenger-carrying compartment, such as for gearshift selector and parking brake lever, shall be sealed.

Passenger Load

1. Actual GVW is the sum of the chassis weight, plus the body weight, plus the driver's weight, plus total seated pupil weight.

 A. For purposes of calculation, the driver's weight is 150 pounds.

 B. For purposes of calculation, the pupil weight is 120 pounds per pupil.

2. Actual GVW shall not exceed the chassis manufacturer's GVWR for the chassis.

3. The manufacturer's GVWR shall be furnished in duplicate (unless more are requested) by the manufacturers to the state agency having pupil transportation jurisdiction. The state agency shall, in turn, transmit such ratings to each other state agency responsible for the development or enforcement of state standards for school buses.

Power and Gradeability

Gross Vehicle Weight (GVW) shall not exceed 185 pounds per published net horsepower of the engine at the manufacturer’s recommended maximum number of revolutions per minute.

Retarder System (Optional)

A retarder system, if used, shall maintain the speed of the fully loaded school bus at 19.0 mph or 30 km/hr on a 7% grade for 3.6 miles or 6 km.
Shock Absorbers

Buses shall be equipped with front and rear double-action shock absorbers compatible with the manufacturer’s rated axle capacity at each wheel location.

Springs

1. The capacity of the springs or suspension assemblies shall be commensurate with the chassis manufacturer’s GVWR.

2. Front springs shall be of the leaf type, shall have a stationary eye at one end, and shall be protected by a wrapper leaf in addition to the main leaf. Rear leaf springs shall be of the progressive type.

3. Air ride suspension may be used on the front and rear of Type D buses and on the rear of Type C buses. Body and chassis parts must clear tires with air bags in fully deflated condition or steering wheel turned fully to the left or right.

Steering Gear

1. The steering gear shall be approved by the chassis manufacturer and designed to assure safe and accurate performance when the vehicle is operated with maximum load and at maximum speed.

2. If external adjustments are required, the steering mechanism must be accessible to accomplish the same.

3. No changes shall be made in the steering apparatus, which are not approved by the chassis manufacturer.

4. There shall be a clearance of at least two inches between the steering wheel and the cowl, instrument panel, windshield, or any other surface.

5. Power steering is required and shall be of the integral type with integral valves.

6. The steering system shall be designed to provide a means for lubrication of all wear-points, if wear-points are not permanently lubricated.

7. The steering wheel shall meet manufacturer’s specifications.

Tires and Rims

1. Radial tubeless tires and rims of proper size and tires with a load rating commensurate with chassis manufacturer’s GVWR shall be provided.
2. Dual rear tires shall be provided on all school buses.

3. All tires on any given vehicle shall be of the same size and the load range of said tires shall meet or exceed the gross axle weight rating as required by FMVSS 120. Low profile tires are acceptable. However, they must meet the load range and ply requirements as shown on the chart on the last page of this booklet. It is recommended that dish-type rims be used with low profile tires.

4. If the vehicle is equipped with a spare tire and rim assembly, it shall be of the same size as those mounted on the vehicle.

5. If a tire carrier is required, it shall be suitably mounted in an accessible location outside the passenger compartment.

Transmission

An automatic transmission shall be required on all buses. Type A buses may be built to manufacturer’s specifications. Types B, C, and D buses must have AT545, A2000 series or prior approved equal. The automatic transmission shall have at least four forward-gear ratios, plus integral torque converter. The transmission shift quadrant shall provide four forward drive ranges plus neutral and reverse ranges. Within the range selected, ratio changes shall be effected automatically and at full engine power if desirable, and without use of an engine disconnect clutch. An MT643, MD3060 or prior approved equal is required for chassis over 30,000 pounds GVWR.

Turning Radius

1. Chassis with a wheelbase of 264 inches or less shall have a right and left turning radius of not more than 42 and 1/2 feet, curb-to-curb measurement.

2. Chassis with a wheelbase of 265 inches or more shall have a right and left turning radius of not more than 44 1/2 feet, curb-to-curb measurement.

Undercoating

The chassis manufacturer, or agent thereof, shall coat the undersides of steel or metallic-constructed front fenders with rust-proofing compound for which compound manufacturers have issued notarized certification of compliance to the chassis builder that the compound meets or exceeds all performance and qualitative requirements of paragraph 3.4 of Federal Specification TT-C520B using modified test.

Weight Distribution

The weight distribution of a fully loaded bus on a level surface shall be such as not to exceed the manufacturer’s front gross axle rating and rear gross axle weight rating.
SECTION III - SCHOOL BUS BODY STANDARDS

Air Conditioning

Buses may be equipped with an air conditioning unit if the local education agency (LEA) desires.

All buses ordered with air conditioning shall meet the following minimum specifications:

1. Floor--All flooring shall be 5/8-inch exterior-grade plywood over steel flooring.
2. All buses shall have a white roof.
3. Windows--All windows shall be tinted with a minimum of 50% light transmission.
4. All buses shall meet insulation standards as per Alabama bus specifications.

Buses ordered with air conditioning shall also meet the following minimum alternator specifications:

1. 40,000 to 53,000 Btu system 124 amp minimum
2. 53,001 to 108,000 Btu system 160 amp minimum

Minimum Btu air conditioning system per passenger size:

1. 10-30-passenger 40,000 Btu
2. 31-48-passenger 53,000 Btu
3. 49-60-passenger 78,000 Btu
4. 61-84-passenger 100,000 Btu

Large capacity buses, 72-passenger and over, should increase Btu size to accommodate larger passenger loads. See specific requirements for systems on following pages.

Aisle

1. All emergency doors shall be accessible by a 12-inch minimum aisle. The aisle shall be unobstructed at all times.

2. Seat backs shall be slanted sufficiently to give aisle clearance of 15 inches at the tops of seat backs.

Back-Up Warning Alarm

An automatic audible alarm shall be installed behind the rear axle and shall comply with the Society of Automotive Engineers published Back-up Alarm Standards (SAE 994), a minimum of 112 dbA for rubber-tired vehicles.
Battery/Batteries

1. Batteries are to be furnished by the chassis manufacturer.

2. When the battery/batteries is mounted as described in the Chassis Standard, the body manufacturer shall securely attach the battery on a slide-out or swing-out tray in a closed, vented compartment in the body skirt, so that the battery is accessible for convenient servicing from the outside. The battery compartment door or cover shall be hinged at the front and secured by an adequate and conveniently-operated latch or other type fastener.

Bumper (Front)

On a Type D school bus, if the chassis manufacturer does not provide a bumper, it shall be provided by the body manufacturer. The bumper will conform to the standards in the chassis section.

Bumper (Rear)

1. Bumpers shall be of pressed steel channel or equivalent material, at least 3/16-inch thick, and shall be a minimum of 9-1/2 inches wide (high) on all Types B, C, and D buses. Type A buses shall have a minimum of an 8-inch rear bumper.

2. Bumpers shall be wrapped around the back corners of the bus. It shall extend forward at least 12 inches, measured from the rear-most point of the body at the floor line.

3. Bumpers shall be attached to the chassis frame in such a manner that it may be easily removed. It shall be so braced as to withstand impact from a rear or side impact. It shall be so attached as to discourage hitching of rides.

4. Bumpers shall extend at least one inch beyond rear-most part of body surface measured at the floor line.

5. An energy-absorbing rear bumper may be used, providing a self-restoring energy absorbing bumper system so attached to prevent the hitching of rides and of sufficient strength to:

 A. Withstand repeated impacts without damage to the bumper, chassis, or body according to the following FMVSS performance standards.

 (1) 2.0 MPH fixed barrier impact (FMVSS cart and barrier test)
 (2) 4.0 MPH corner impact at 30 degrees (Part 581, CFR Title 49)
 (3) 5.0 MPH center impact (Part 581, CFR Title 49)
B. The manufacturer of the energy-absorbing system shall provide evidence from an approved test facility (capable of performing the above FMVSS test) that their product conforms to the above.

6. Tow eyes or hooks may be furnished on the rear and attached so they do not project beyond the rear bumper. The installation shall be in accordance with the chassis manufacturer’s specifications.

Ceiling

See Insulation and Interior, Body Standard.

Certification

The body manufacturer shall certify to the SDE and local education agency having pupil transportation jurisdiction that their product meets minimum standards on items not covered by certification issued under requirements of the National Traffic and Motor Vehicle Safety Act.

Chains (Tire)

See Wheel Housing Body Standard.

Color

1. The school bus body shall be painted National School Bus Yellow.

2. The body exterior paint trim, bumper, lamp hoods and lettering shall be black.

3. The roof of the bus may be painted white not to extend below the drip rails on the sides of the body except that front and rear roof caps shall remain National School Bus Yellow.

Construction

1. Construction shall be of prime commercial quality steel or other material with strength at least equivalent to all-steel as certified by the bus body manufacturer. All such construction materials shall be fire resistant.

2. Construction shall be dust proof and watertight, so the bus does not leak under normal operating conditions.

3. Body joints present in that portion of a Type A school bus body furnished exclusively by the body manufacturer shall conform to the performance requirements of FMVSS 221, “School Bus Body Joint Strength.” This does not
include the body joints created when body components are attached to components furnished by the chassis manufacturer.

4. Type A school bus bodies shall be equipped with restraining barriers conforming to FMVSS 222, “School Bus Passenger Seating--Crash Protection,” Sections 5.2 and 5.3.

Crossing Control Arm

1. Buses shall be equipped with a crossing control arm mounted on the right side of the front bumper, which shall not open more than 90 degrees.

2. All components of the crossing control arm and all connections shall be weatherproofed.

3. The crossing control arm shall incorporate system connectors (electrical or air) at the gate and shall be easily removable to allow for towing of the bus.

4. The crossing control arm shall meet or exceed SAE Standard J1133.

5. The crossing control arm shall be constructed of non-corrosive or nonferrous material or treated in accordance with the body sheet metal standard (see Metal Treatment).

6. There shall be no sharp edges or projections that could cause hazard or injury to students.

7. The crossing control arm shall extend a minimum of 70” from the front bumper when in the extended position.

8. The crossing control arms shall extend simultaneously with the stop arm(s) by means of the stop arm controls. An interrupt switch shall be installed to allow the driver to deactivate the control arm when necessary.

9. An electromagnetic device shall be installed to stabilize the arm when in the stored position.

10. Crossing control arm shall be Specialty Manufacturing Company, Part #58600, or prior approved equal.

Defrosters

1. The windshield defroster and defogging system shall provide defogging of the entire windshield, driver’s side window, and entrance door glasses by utilizing hot air taken from the heater core with vents across the entire windshield.
2. The defrosting system shall conform to Society of Automotive Engineers’ Standards J381 and J382.

3. The defroster and defogging system shall be capable of furnishing heated outside ambient air.
4. Auxiliary fans are not considered defrosting or defogging systems.
5. Portable heaters shall not be used.

Doors

1. Service Door:

 A. The service door shall be in the driver’s control, and designed to afford easy release and provide a positive latching device on manual operating doors to prevent accidental opening. When a hand lever is used, no part shall come together that will shear or crush fingers. Manual door controls shall not require more than 25 pounds of force to operate at any point throughout the range of operation.

 B. The service door shall be located on the right side of the bus, opposite and within direct view of the driver.

 C. The service door shall have a minimum horizontal opening of 24 inches and a minimum vertical opening of 68 inches. Type A vehicles shall have a minimum opening area of 1200 square inches.

 D. The service door shall be a split type, both sections opening outward.

 E. Lower, as well as upper door panels, shall be of approved safety glass. The bottom of each lower glass panel shall not be more than 10 inches from the top surface of the bottom step. The top of each upper glass panel shall not be more than 6 inches from the top of the door. Type A vehicles shall have an upper panel (windows) of safety glass with an area of at least 350 square inches.

 F. Vertical closing edges on split type entrance doors shall be equipped with flexible material to protect the children’s fingers. Type A vehicles may be equipped with the chassis manufacturer’s standard entrance door.

 G. There shall be no door to the left in driver compartment on Types B, C or D vehicles.

 H. All doors shall be equipped with padding at the top edge of each door opening. Pad shall be at least three inches wide and one inch thick and extend the full width of the door opening.
I. If air doors are used, a three-position control switch shall be installed.

Emergency Exits

1. Emergency Door:

 A. The emergency door shall be hinged on the right side if in the rear end of bus and on the front side if on left or right side of the bus. It shall open outward and be labeled inside to indicate how it is to be opened. If double emergency doors are used on Type A vehicles, they shall be hinged on the outside edge and shall have a three-point fastening device. A device shall be used that holds the door open to prevent the emergency door from closing during emergencies and school bus evacuation drills. If emergency door locks are used, the vehicle ignition must be disabled until the emergency door lock is deactivated.

 B. The upper portion of the emergency door shall be equipped with approved safety glazing, the exposed area of which shall be at least 400 square inches. The lower portion of the rear emergency door on Types B, C, and D vehicles shall be equipped with a minimum of 350 square inches of approved safety glazing.

 C. There shall be no steps leading to an emergency door.

 D. The words EMERGENCY DOOR, in letters at least two inches high, shall be placed at the top of or directly above the emergency door or on the door in the metal panel above the top glass, both inside and outside of the bus. The words EMERGENCY EXIT in letters at least 2 inches high shall be placed on the exterior body directly above each emergency window.

 E. The emergency door shall be equipped with padding at the top edge of each door opening. Padding shall be at least three inches wide and one inch thick, and extend the full width of the door opening.

 F. The side emergency door, if installed, must meet the requirements as set forth in FMVSS, Standard 217 (a), regardless of its use with any other combination of emergency exits.

 (1) A left side emergency door shall have a 20 inch unobstructed passageway and no flip seat is to be used. A barrier shall be used just before the door opening.

 G. There shall be no obstruction higher than 1/4 inch across the bottom of any emergency door opening.

2. Additional Emergency Exits:
A. All school buses shall be equipped with emergency exits in the following capacity vehicles prior to modification for special needs students:

- 0 to 22 passenger: one emergency window exit per side and one roof hatch located midpoint
- 23 to 54 passenger: one emergency window exit per side located midpoint and two roof hatches
- 55 and above passenger: two emergency window exits per side, and two roof hatches

B. Each emergency exit shall comply with FMVSS 217. These emergency exits are in addition to the rear emergency door or exit. Roof hatches must be either TransSpec EconoVent or Speciality Manufacturing 8600 or 8900 series or prior approved equal.

(1) Emergency exit windows shall be as evenly spaced as possible under FMVSS 217 guidelines and shall not be obstructed by any devices.

C. In addition to the audible warning required on emergency doors by FMVSS 217, additional emergency exits shall also be like protected.

D. School bus emergency exits shall be marked with a minimum one inch wide strip of retro-reflective tape, either red, white or yellow in color, to be placed around the outside perimeter of the emergency exit opening, not the emergency exit itself.

The words **EMERGENCY EXIT**, in letters at least two inches high, shall be placed on the body directly above each emergency window.

Emergency Equipment

1. Fire Extinguishers:

 A. The bus shall be equipped with at least one pressurized, dry chemical fire extinguisher complete with hose to meet Underwriters Laboratories, Inc., approval. A pressure gauge shall be mounted on the extinguisher and easily read without moving the extinguisher from its mounted position.

 The bracket shall be a heavy-duty, snap-in, spring type. Band type holders are not acceptable.

 B. The fire extinguisher shall have a capacity of **five pounds** with an Underwriters Laboratories total rating of 2A10BC or greater. The operating mechanism shall be sealed with a type of seal that will not interfere with the use of the fire extinguisher.
C. Fire extinguishers must comply with State Fire Codes.

2. First-Aid Kit:

A. Bus shall have a removable, moisture proof and dust-proof first-aid kit mounted with a separate bracket in an accessible place below the window line in driver’s compartment. This place shall be marked to indicate its location.

B. Contents shall include:

- 2 rolls of 1” x 2 1/2 yards adhesive tape
- 24 sterile gauze pads 3” x 3”
- 10 3/4” x 3” adhesive bandages
- 8 2” bandage compress
- 100 3” bandage compress
- 2 2” x 6” sterile gauze roller bandages
- 2 non-sterile triangular bandages approximately 40” x 36” x 54” with 2 safety pins
- 3 sterile gauze pads 36” x 36”
- 3 sterile eye pads
- 1 pair rounded-end scissors
- 1 pair latex gloves
- 1 mouth-to-mouth airway

3. Body Fluid Clean-up Kit:

A. Each bus shall have a removable and moisture proof body fluid clean-up kit. It shall be properly mounted and identified as a body fluid clean-up kit. Must meet OSHA regulations.

4. Warning Devices:

A. Each school bus shall contain at least three (3) reflectorized triangle road warning devices mounted in an accessible place in the driver’s compartment. The mounting location in Type A vehicles is optional. These devices must meet requirements in FMVSS 125.

Floor and Floor Coverings

1. The floor in the underseat area, including the tops of the wheel housing, driver’s compartment and toe board, shall be covered with rubber floor covering or equivalent, having a minimum overall thickness of .125 inch.

2. The floor covering in the aisle shall be of aisle-type rubber or equivalent, wear-resistant and ribbed. The minimum overall thickness shall be .187 inch measured from tops of ribs.
3. The floor covering must be permanently bonded to the floor and must not crack when subjected to sudden changes in temperature. Bonding or adhesive material shall be waterproof and shall be of a type recommended by the manufacturer of the floor-covering material. All seams must be sealed with waterproof sealer.

4. The manufacturer shall provide a screw-down plate to access fuel tank sending unit that is secured and insulated. The plate shall be mounted so that access is readily available to repair personnel and so that the floor covering is not disturbed during the repair process.

5. The floor shall be of metal or alloy at least equal in strength to 14-gauge prime commercial quality steel and so constructed that exhaust gases cannot enter the passenger compartment.

6. All closures between the bus body and the engine compartment shall be fitted with gas-tight gaskets and pedal openings shall be closed bellows type, gas-tight boots.

7. There shall be a plate, of adequate size, provided to allow for transmission access or service.

Heaters

1. Heaters shall be of hot-water type with a minimum of 80,000 Btu. rating. Heaters shall utilize a separate blower motor, switches, circuit breakers and ducting from the heater core.

2. If only one heater is used, it shall be a fresh-air or combination fresh-air and recirculation type.

3. If more than one heater is used, additional heaters shall be a recirculating-air type.

4. The heating system shall be capable of maintaining the temperature throughout the bus of not less than 55 degrees Fahrenheit during average minimum January temperatures as established by the U. S. Department of Commerce, Weather Bureau, for the area in which the vehicle is to be operated.

5. All heaters installed by body manufacturers shall bear a name plate that shall indicate the heater rating in accordance with SBMI Standard No. 001, with said plate to be affixed by the heater manufacturer which shall constitute certification that the heater performance is as shown on the plate.

6. Heater hoses shall be adequately supported to guard against excessive wear due to vibration. The hoses shall not dangle or rub against the chassis or sharp edges and shall not interfere with or restrict the operation of any engine function. Heater hoses shall conform to the Society of Automotive Engineers’ Standard J20c. Heater lines
on the interior of the bus shall be shielded to prevent scalding of the driver or passengers.

7. Each hot water system installed by a body manufacturer shall include one shut-off valve in the pressure line and one shut-off valve in the return line with both valves at or near the engine in an accessible location.

8. There shall be a water flow-regulating valve installed in the pressure line for convenient operation by the driver while seated.

9. Accessible bleeder valves shall be installed in an appropriate place in the return lines of body company-installed heaters to remove air from the heater lines.

10. Access panels shall be provided to make heater motors, cores, and fans readily accessible for service. An outside access panel may be provided for the driver’s heater.

11. On Types B, C, and D buses heat shall be channeled one-half of the body length on the left side at floor level with a blower at the end of the channel OR buses must be equipped with a 50,000 Btu auxiliary heater located behind midpoint of bus.

Identification

1. School bus bodies shall bear the words, SCHOOL BUS, in eight-inch black letters on National School Bus Yellow, on the front and back of the bus (lettering between flasher lights). The name of the school system shall be on each side of the bus in 5-inch, black standard, unshaded letters. Lettering shall conform to “Series B” of Standard Alphabets for Highway Signs. Each bus shall be numbered on both sides, left front bumper, and the rear before being put into service. Bumper numbers may be white or yellow. An agreement between manufacturer and purchaser shall be reached at time order is placed as to who will put the numbers on the buses. Any other numbering shall be optional.

2. Only signs and lettering approved by state law or regulation, limited to the name of the owner or operator and any marking necessary for identification, shall appear on the bus.

3. At the option of the purchaser, the following lettering may be placed on the rear door of the bus at time of purchase: (STATE LAW: STOP WHILE BUSES LOAD OR UNLOAD STUDENTS).

Inside Height

The inside body height shall be 72 inches or more, measured metal to metal, at any point on the longitudinal center line from the front vertical bow to the rear vertical bow. The inside body height of Type A buses shall be 62 inches or more.
Insulation

1. Ceilings and walls shall be insulated with proper material to deaden sound and reduce vibration to a minimum. If thermal insulation is specified, it shall be fire-resistant and approved by Underwriters Laboratories, Inc. If buses are equipped with air conditioning, walls and ceilings must be insulated to improve air conditioner efficiency.

2. If floor insulation is required, it shall be either 5-ply nominal 19/32 inches thick plywood, or a material of equal or greater strength and insulation R value, and it will equal or exceed properties of exterior-type softwood plywood, C-D Grade as specified in standard issued by U. S. Department of Commerce. When plywood is used, all exposed edges shall be sealed.

Interior

1. The interior of the bus shall be free of all unnecessary projections, which include luggage racks and attendant handrails, likely to cause injury. This standard requires inner lining on ceilings and walls. If the ceiling is constructed to contain lapped joints, the forward panel shall be lapped by the rear panel and exposed edges shall be beaded, hemmed, flanged, or otherwise treated to minimize sharp edges.

2. The driver’s area forward of the foremost padded barriers will permit the mounting of required safety equipment and vehicle operation equipment.

3. Every school bus shall be constructed so that the noise level taken at the ear of the occupant nearest to the primary vehicle noise source shall not exceed 85 dB when tested.

4. Any added equipment shall be flush mounted with the exception of the video system.

Lamps and Signals

1. Interior lamps shall be provided which an adequately illuminated aisle and step well. Step well lights shall be illuminated by a service door operated switch, to illuminate only when headlights and clearance lights are on and the service door is opened.

2. L. E. D. lighting may be used as an alternative to conventional lighting in all lamps and signals except the stop arm, headlamps, and overhead pupil loading lamps.

3. Definition--School bus alternately flashing red and amber signal lamps are lamps mounted at the same horizontal level, intended to identify the vehicle as a school bus and to inform other users of the highway that such vehicle is preparing to stop, or is stopped, on the roadway to take on or to discharge schoolchildren.
A. Buses shall be equipped with two red lamps and two amber lamps at the rear of the vehicle and two red lamps and two amber lamps at the front of the vehicle. One amber lamp shall be located near each red signal lamp at the same level, but closer to the vertical centerline of the bus.

B. The signaling system, including red and amber signal lamps and a stop arm with alternating flashing lamps, shall be so designed and wired as to have the following characteristics:

(1) When the entrance door is closed, a manual push button may be depressed and the amber pilot light and amber warning lights will flash.

(2) When the entrance door is opened, the amber pilot and amber warning lights will go off, and the red pilot and red warning lights will flash; also, the stop arm will be extended and lights on the stop arm will flash.

(3) On closing the entrance door, all lights will go out and the stop arm retract automatically.

(4) If the entrance door is opened without depressing the manual push button, no lights will flash, nor will the stop arm be extended.

C. The area around the lens of each alternately flashing signal lamp, and extending outward approximately three inches, shall be painted black. In installations where there is no flat vertical portion of the body immediately surrounding the entire lens of the lamp, a circular or square band of black approximately three inches wide, immediately below and to both sides of the lens, shall be painted on the body or roof area against which signal lamp is seen (from a distance of 500 feet along axis of the vehicle).

4. Rear turn signal lamps shall be at least seven inches in diameter mounted on the rear with an arrow in the amber lens. These signals must be independent units and must be equipped with a four-way hazard warning switch to cause simultaneous flashing of turn signal lamps when needed as vehicular traffic hazard warning. Rear directional lights shall be mounted not more than 15 inches from the plane of the side of the body, and not more than 14 inches below the glass in the rear of the body. Buses shall be equipped with two brake stop lights at least seven inches in diameter with a red lens not in combination with the directional lights. Type A conversion vehicle lamps must be 21 square inches in the lens area. Two combination lamps with a minimum diameter of four inches, or if a shape other than round, a minimum 12 square inches of illuminated area shall be placed on the rear of the body between the beltline and the floor line. The rear license plate lamp may be combined with one lower tail lamp. Stop lamps shall be activated by the service brakes and shall emit a steady light when illuminated.
A. All Type D buses shall have side turn indicators on both sides located at the floor line approximately 6 to 8 feet from the front of the bus.

5. On all buses equipped with a monitor for the front and rear lamps of the school bus, the monitor shall be mounted in full view of the driver. If the full circuit current passes through the monitor, each circuit shall be protected by a fuse or circuit breaker against any short circuit or intermittent shorts.

6. A yellow flashing strobe light shall be installed on the roof of a school bus not to exceed 1/3 the body length forward from the rear of the roof edge. This light shall have a single yellow lens emitting light 360 degrees around its vertical axis and may not extend above the roof more than the maximum legal height. A manual switch and a pilot light of low intensity must be included to indicate when the light is in operation. The pilot light shall be incorporated into the switch.

7. If alternating headlights are used (i.e., wig-wag), they must operate in conjunction with the red overhead flashers and stop arm.

Metal Treatment

1. All metal used in construction of a bus body shall be zinc-coated or aluminum-coated or treated by an equivalent process before the bus is constructed. Included are such items as structural members, inside and outside panels, door panels and floor sills. Excluded are such items as door handles, grab handles, interior decorative parts and other interior plated parts.

2. In addition to the above requirements, all metal parts that will be painted shall be chemically cleaned, etched, zinc-phosphate-coat and zinc-chrome or epoxy primed or conditioned by equivalent process.

3. In providing for these requirements, particular attention shall be given to lapped surfaces, welded connections of structural members, cut edges punched or drilled hole areas in sheet metal, closed or box sections, unvented or undrained areas and surfaces subjected to abrasion during vehicle operation.

4. As evidence that the above requirements have been met, samples of materials and sections used in construction of the bus body, when subjected to 1,000-hour salt spray test as provided for in latest revision of ASTM Standard B-117 “Standard Method of Salt Spray (Fog) Testing” shall not lose more than 10 percent of its material by weight.

Mirrors

1. Interior mirrors shall be either clear laminated glass or clear view glass bonded to a backing, which retains the glass in the event of breakage. Mirrors shall have rounded corners and protected edges. Type A buses shall have a minimum of a 6” x
16” mirror and Type B, C, and D buses shall have a minimum of a 6” x 30” mirror. It shall be securely attached on the windshield header and so located as to give the driver a clear view of the entire interior of the bus and the road behind.

2. Each school bus shall be equipped with a system of exterior mirrors as defined in FMVSS 111.

A. Rear vision mirrors shall be capable of providing a view along the left and right sides of the vehicle which will provide the driver with a view of the rear tires at ground level, a minimum distance of 200 feet to the rear of the bus and at least 12 feet perpendicular to the side of the bus at a distance of 32 feet back from the front bumper.

B. The crossview mirror system shall provide the driver with indirect vision of an area at ground level from the front bumper forward and the entire width of the bus to a point where the driver can see by direct vision. The crossview system shall also provide the driver with direct vision of the area at ground level around the left and right front corners of the bus to include the tires and service entrance on all types of buses to a point where it overlaps with the rear vision mirror system. A metal reinforcement plate shall be installed under the hood area of fiberglass hoods in order to reinforce crossview mirror mounting base area.

C. This system of mirrors shall be easily adjustable but be rigidly braced so as to reduce vibration.

Mounting

1. The chassis frames shall support the rear body cross member. The bus body shall be attached to the chassis frame at each main floor sill, except where chassis components interfere, in such a manner as to prevent shifting or separation of the body from the chassis under severe operating conditions.

2. Insulation material shall be placed at all contact points between the body and chassis frame on Types A, B, C and D buses, and shall be so attached to the chassis frame or body that it will not move under severe operating conditions.

Overall Length

The overall length of the bus shall not exceed 40 feet excluding accessories.

Overall Width

The overall width of the bus shall not exceed 102 inches excluding accessories.
Public Address System

Buses may be equipped with a public address system having interior and exterior speakers. Interior speakers shall be flush mounted with bulkhead.

Reflective Material

1. The front and/or rear bumper may be marked diagonally 45 degrees down to the centerline of the pavement with 2” x 1/4” wide strips of non-contrasting reflective material.

2. The rear of the bus body shall be marked with strips of reflective National School Bus Yellow (NSBY) material to outline the perimeter of the back of the bus using material which conforms with the requirements of FMVSS 571.131 (Table I). The perimeter marking of rear emergency exits per FMVSS 217 and/or the use of reflective SCHOOL BUS signs partially accomplish the objective of this requirement. To complete the perimeter marking of the back of the bus, strips of at least one-inch reflective NSBY material shall be applied horizontally above the rear windows and above the rear bumper, extending from the rear emergency exit perimeter marking outward to the left and rear corners of the bus. Vertical strips shall be applied at the corners connecting these horizontal strips.

3. **SCHOOL BUS** signs, if not of a lighted design, shall be marked with reflective NSBY material comprising a background for lettering of the front and/or rear **SCHOOL BUS** signs.

4. The sides of the bus body shall be marked with reflective NSBY material at least one inch in width, extending the length of the bus body and located (vertically) between the floor line and the belt line.

NOTE: Reflectivity of the stop signal arm is to be addressed under the Stop Signal Arm Section. Signs, if used, placed on the rear of the bus relating to school bus flashing signal lamps or railroad stop procedure may be of a reflective material [as specified by each state].

Rub Rails

1. There shall be one rub rail located on each side of the bus approximately at seat level which shall extend from the rear side of the entrance door completely around the bus body (except emergency door) to a point of curvature near the outside cowl on the left side.

2. There shall be one rub rail located approximately at the floor line which shall cover the same longitudinal area as the upper rub rail, except at the wheel housing, and shall extend only to radii of the right and left rear corners.
3. Both rub rails shall be attached at each body post and all other upright structural members.

4. Both rub rails shall be 4 inches or more in width in their finished form, shall be of 16-gauge steel or suitable material of equivalent strength, and shall be constructed in a corrugated or ribbed fashion.

5. Both rub rails shall be applied to the outside of the body or outside body posts. Pressed-in or snap-on rub rails do not satisfy this requirement. For Types A and B vehicles using a chassis manufacturer’s body, or for Types C, and D buses using rear luggage or rear engine compartments, rub rails need not extend around rear corners.

6. There shall be a rub rail or equivalent bracing located horizontally at the bottom edge of the body side skirts.

Seat Belt for Driver

The driver’s seat shall be equipped with the seat belt anchored to the floor, housed in scabbard and equipped with an emergency locking retractor (one side only). The driver’s seat shall be equipped with a Type II occupant protection (lap and shoulder belt). Adjustability of the mounting point for the driver’s seat belt pillar loop shall be provided to accommodate all heights and weights of bus drivers without interference with the driver’s face or neck. The requirements of FMVSS 209 and 210 shall be met.

Seat and Crash Barriers

1. Seats shall be spaced to obtain a minimum of 24-inch hip-to-knee room measured horizontally at the seat cushion level at the transverse centerline of the seat. In making this measurement from the back of the seat cushion to the back of the seat or barrier in front, upholstery may be placed against padding both forward and rear but padding may not be compressed. Greater seat spacing may be specified on local bids not to exceed the maximum allowable per FMVSS 222.

2. In determining seating capacity of standard school buses, the allowable average rump width shall be 13 inches where a 3-3 seating plan is used, and thirteen (13) or 15 inches where 3-2 seating plan is used on specially-equipped buses.

3. All seats shall be bench style, forward facing and have a minimum depth of 15 inches. No transit or activity seat will be used. There shall be no armrest on student seats. No bus shall be equipped with jump seats or portable seats.

4. All seat frames attached to the seat rail shall be fastened with two (2) bolts, washers and nuts or flange-headed nuts. Each seat leg shall be secured to the floor by a minimum of two (2) bolts, washers and nuts. Flange-head nuts may be used in lieu of nuts and washers, or seats may be track-mounted in conformance with FMVSS 222. If track seating is installed, the manufacturer shall supply minimum and
maximum seat spacing dimensions applicable to the bus, which comply with FMVSS 222. This information shall be on a label permanently affixed to the bus.

5. The forward most pupil seat on the right side of the bus shall be located so as not to interfere with the driver’s vision, not farther forward than the barrier behind the driver or the rear of the driver’s seat when adjusted to its rear-most position.

6. All seats and backs shall be a standard color unless changed by purchaser. Seat and back cushions of all seats shall be designed to safely support the designated number of passengers under normal road conditions encountered in school-bus service. Coverings of seat cushions shall be of a material having 42-ounce finished weight, 54-inch width, and finished vinyl coating of 1.06 broken twill or approved equal by presenting independent laboratory reports for approval.

7. The driver’s seat shall be of the high back type with a minimum seat back adjustment of 15 degrees and with a head restraint to accommodate a 95 percentile adult male (95 percentile adult male as defined in FMVSS 208). The driver’s seat shall be secured with nuts, bolts, and washers or flanged-headed nuts.

8. All restraining barriers and passenger seats shall be constructed with a material that meets the criteria contained in the School Bus Seat Upholstery Fire Block Test.

9. Crash barriers shall be placed behind the driver’s seat and step well. An aluminized courtesy panel on the right side of the bus shall extend to the floor and to the wall. Stanchions are not acceptable.

Steering Wheel

See Chassis Standard.

Steps

1. The first step at the service door shall be no less than 10 inches and no more than 14 inches from the ground measured from the bottom of the first step.

 A. Type D vehicles shall have the first step at the service door 12 to 16 inches from the ground measured from the bottom of the first step.

2. The service door entrance shall use a three-step step well. Risers shall be of equal height and depth. When a plywood floor is used on steel, the differential may be increased by the thickness of plywood.

3. Steps shall be enclosed to prevent accumulation of ice and snow.

4. Steps shall not protrude beyond the side bodyline.
5. A suitable device (or devices) shall be designed to prevent injury or fatality to passengers from being dragged. At least one such device shall assist passengers during entry or egress, and be of such design as to eliminate entanglement.

Step Treads

1. All steps, including the floor line platform area, shall be covered with a 3/16-inch rubber floor covering or other materials equal in wear and abrasion resistance to top grade rubber.

2. The metal back of the tread, a minimum 24-gauge cold roll steel, shall be permanently bonded to ribbed rubber; the grooved design shall be such that said grooves run at 90-degree angles to the long dimension of the step treads.

3. A three-sixteenths-inch ribbed step tread shall have a 1 and 1/2 inch white nosing as an integral piece without any joint.

4. The rubber portion of step treads shall have the following characteristics:

 A. Special compounding for good abrasion resistance and high coefficient of friction.

 B. Flexibility so that it can be bent around a 1/2 inch mandrel both at 130 degrees Fahrenheit and 20 degrees Fahrenheit without breaking, cracking, or crazing.

 C. Show a durometer hardness of 85 to 95.

Stirrup Step

There shall be one stirrup step on all Types B, C, and D buses on each side of the front of the body for use in cleaning the windshield and lamps. There shall be one handle on each side, at least eight inches in length suitably located for the driver to use while cleaning the windshield and lamps. The stirrup steps and the handles shall be of rust-resistant material. Transit buses shall have provisions for cleaning the windshield. Toe eyes in the bumper with a handle(s), above the windshield, are acceptable.

Stop Arm Signal

All stop arm signals shall be of the strobe-type and have reflective coating. The stop signal - arm(s) shall comply with the requirements of FMVSS 131.

Stop Arm Signal - Rear (Optional)

A rear stop arm is permissible when used in conjunction with the original stop arm. The rear stop arm location on dual stop arm-equipped buses shall be on the left side of the bus, as close as is practical to the left rear corner of the body. Vacuum or air lines if used must not be readily accessible to students inside or outside of the bus.
Storage Compartment

If tools, tire chains, and/or tow chains are carried on the bus, a container of adequate strength and capacity may be provided. Such storage container may be located either inside or outside, it shall be mounted under a seat with a cover (a seat cushion may not serve as this purpose), capable of being securely latched and be fastened to the floor convenient to either the service or emergency door.

Sun Shield

Each Type B, C, and D school bus shall have an interior adjustable sun visor with minimum measurements of 6 inches by 30 inches. It shall be installed centered immediately above the windshield and anchored on both ends, and shall be tinted transparent plastic or phlex-o-glass. On all Type A buses the sun shield shall be the manufacturer’s standard. An additional sun shield may be added over the left side driver window at option of the local school system.

Tailpipe

See Chassis Standard.

Traction-Assisting Devices

1. Where required or used, sanders shall:

 A. Be of the hopper cartridge-valve type.

 B. Have a metal hopper with all interior surfaces treated to prevent condensation of moisture.

 C. Be of at least 100-pound (grit) capacity.

 D. Have a cover on the filler opening of the hopper, which screws into place, sealing the unit airtight.

 E. Have discharge tubes extending to the front of each rear wheel under the fender.

 F. Have no-clogging discharge tubes with slush-proof, non-freezing rubber nozzles.

 G. Be operated by an electric switch with a telltale pilot light mounted on the instrument panel.

 H. Be exclusively driver controlled.

 I. Have a gauge to indicate the hopper needs refilling when it is down to one quarter full.
2. Automatic traction chains may be installed.

Trash Container and Holding Device

1. Where required or used, the trash container shall:

 A. Be of fire resistant polyethylene or equivalent material.
 B. Be no greater than 14-quart capacity.
 C. Be secured by a holding device that is designed to prevent movement and allow easy removal and replacement.

 D. Be installed in an accessible location in the driver’s compartment, not obstructing passenger use of the service door or access to emergency equipment.

Undercoating

1. The entire underside of the bus body, including floor sections, the cross member and below floor line side panels, shall be coated with rust-proofing the compound for which compound manufacturer has issued notarized certification of compliance to the bus body builder that the compound meets or exceeds all performance and qualitative requirements of paragraph 3.4 of Federal Specification TT-C-250b using modified test procedures for the following requirements*:

 A. Salt spray resistance-pass modified to 5% salt and 1000 hours.
 B. Abrasion resistance-pass.
 C. Fire resistance-pass.

*Test panels are to be prepared in accordance with paragraph 4.6.12 of TT-C-520b with the modified procedure requiring that the test be made on a 48-hour air-cured film at a thickness recommended by the compound manufacturer.

2. The undercoating compound shall be applied with suitable airless or conventional spray equipment to recommend film thickness and shall show no evidence of voids in cured film.

Ventilation

1. Auxiliary fans if installed shall meet the following requirements:

 A. Fans for left and right sides shall be placed in a location where they can be adjusted for maximum effectiveness and do not obstruct vision to any mirror.

 NOTE: All Type A buses may be equipped with one fan.
B. Fans shall be a nominal 6” diameter.

C. Fan blades shall be covered with a protective cage. Each fan shall be controlled by a separate switch.

2. The body shall be equipped with a suitably controlled ventilating system of sufficient capacity to maintain the proper quantity of air under operating conditions, without having to open windows except in extremely warm weather.

3. A static-type, non-closeable exhaust ventilation shall be installed in a low-pressure area of the roof.

Wheel Housing

1. The wheel-housing opening shall allow for easy tire removal and service.

2. The wheel housing shall be attached to the floor sheets in such a manner as to prevent any dust, water or fumes from entering the body. The wheel housing shall be constructed of at least 16-gauge steel or other material of equal tensile strength.

3. The inside height of the wheel housing above the floor line shall not exceed 12 inches.

4. The wheel housing shall provide clearance for installation and use of tire chains on single and dual (if so equipped) power-driving wheels.

5. No part of a raised wheel housing shall extend into the emergency door opening.

Windshield and Windows

1. All glass in the windshield, the windows, and doors shall be of approved safety glass so mounted that a permanent mark is visible and of sufficient quality as to prevent distortion of view in any direction.

2. Glass in the windshield shall be heat absorbent, laminated plate. The windshield shall be large enough to permit the driver to see the roadway clearly, shall be slanted to reduce glare, and shall be installed between the front corner posts that are so designed and placed as to afford minimum obstruction to the driver’s view of the roadway.

3. All full side windows shall open vertically so as to provide an unobstructed opening of not less than 9 inches high and 22 inches wide, obtained by lowering the window. Windows shall be a split-sash type and so installed as to provide an emergency exit. There shall be no horizontal, transit or activity-style windows in the student compartment.
4. All exposed edges of glass shall be banded.

5. A tinted and shaded windshield with 73% light transmitted and a six-inch shaded band across the top shall be installed at the factory. Type A-I and A-II buses utilizing the chassis manufacturers one-piece windshield may be equipped with an O.E.M. shade band windshield with a band of approximately 4 inches in height.

Windshield Washers

A windshield washer system shall be provided that will service both windshields.

Windshield Wipers

1. A windshield wiping system, two speed or variable speed, with an intermittent feature shall be provided.

2. The wipers shall be operated by dual electric motors of sufficient power to operate wipers. Type A-I and A-II buses utilizing the chassis manufacturer's one-piece windshield may be equipped with two wipers driven by either one or two electric motors.

Wiring

1. All wiring shall conform to current standards of the Society of Automotive Engineers.

2. Circuits

A. Wiring shall be arranged in circuits as required with each circuit protected by a circuit breaker. A system of color and number coding shall be used and an appropriate identifying diagram shall be provided to the end user along with the wiring diagram provided by the chassis manufacturer. A system of color and number coding shall be used on buses. The following body interconnecting circuits shall be color-coded as noted:

<table>
<thead>
<tr>
<th>Function</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left Rear Directional Light</td>
<td>Yellow</td>
</tr>
<tr>
<td>Right Rear Directional Light</td>
<td>Dark Green</td>
</tr>
<tr>
<td>Stoplights</td>
<td>Red</td>
</tr>
<tr>
<td>Back-up Lights</td>
<td>Blue</td>
</tr>
<tr>
<td>Taillights</td>
<td>Brown</td>
</tr>
<tr>
<td>Ground</td>
<td>White</td>
</tr>
<tr>
<td>Ignition Feed, Primary Feed</td>
<td>Black</td>
</tr>
</tbody>
</table>

The color of cables shall correspond to SAE J1128.
B. Wiring shall be arranged in at least six regular circuits as follows:

(1) Head, tail, stop (brake) and instrument panel lamps.

(2) Clearance and step well lamps. The step well lamp shall be actuated when the service door is opened.

(3) Dome lamp.

(4) Ignition and emergency exits signal.

(5) Turn signal lamps.

(6) Alternately flashing signal lamps.

C. Any of the above combination circuits may be subdivided into additional independent circuits.

D. Each heater and defroster shall have its own circuit breaker.

E. Whenever possible, all other electrical functions (such as sanders and electric-type windshield wipers) shall be provided with independent and properly protected circuits.

F. Each body circuit shall be coded by number or letter on a diagram of circuits and shall be attached to the body in readily accessible location.

3. The entire electrical system of the body shall be designed for the same voltage as the chassis on which the body is mounted.

4. All wiring shall have an amperage capacity equal to or exceeding the designed load. All wiring splices are to be done at an accessible location and noted as splices on the wiring diagram.

5. A body-wiring diagram of easily readable size shall be furnished with each bus body or affixed in an area convenient to the electrical accessory control panel.

6. The body power wire shall be attached to a special terminal on the chassis.

7. All wires passing through metal openings shall be protected by a grommet.

8. Wires and tubing shall be enclosed within body panels.
SECTION IV – SPECIALLY EQUIPPED SCHOOL BUS STANDARDS

Introduction

Equipping buses to accommodate students with special needs is discretionary depending upon the needs of the passengers. While one bus may be fitted with a lift, another may have seat belts installed to secure child seats. Buses so equipped are not to be considered a separate class of school bus, but simply a regular school bus, which is equipped for special accommodations.

The specifications in this section are intended to be supplementary to specifications in the chassis and body sections. In general, specially equipped buses shall meet all the requirements of the preceding sections plus those listed in this section. It is recognized by the entire industry that the field of special transportation is characterized by varied needs for individual cases and by a rapidly emerging technology for meeting those needs. A flexible, “common sense”, approach to the adoption and enforcement of specifications for these vehicle, therefore, is prudent.

By federal regulation, buses, including school buses, are defined as vehicles designed to carry eleven or more (passengers including the driver). Vehicles designed with 10 or fewer passenger positions (including the driver) cannot be certified as buses. For this reason, the federal vehicle classification Multipurpose Passenger Vehicle, or MPV, must be used by manufacturers for these vehicles in lieu of the School Bus. In determining passenger capacity, wheelchair positions are counted as passenger positions. This classification system, while requiring compliance with a less stringent set of Federal Standards for MPV’s does not preclude state or local agencies or these National Standards from requiring compliance of school bus-type MPV’s with the more stringent Federal Standards for school buses.

The following standards address modifications as they pertain to school buses that, with a standard seating arrangement prior to modification, would accommodate more than 10 persons. If by addition of a power lift, mobile seating device positions or other modifications, the capacity is reduced such that vehicles become MPV’s, the intent of these standards is to have these vehicles be required to meet the same standards they would have had to meet prior to such modifications, and such MPV’s are included in all references to school buses and requirements for school buses which follow:

General Requirements

1. School buses designed for transporting students with special transportation needs shall comply with National Standards and with FMVSS applicable to their GVWR category.

2. Any school bus to be used for the transportation of children who are confined to a wheelchair or other mobile positioning device, or who require life support equipment
which prohibits use of the regular service entrance, shall be equipped with a power lift, unless a ramp is needed for unusual circumstances related to passenger needs.

Air Conditioning

Special needs buses may be equipped with air conditioning if the local education agency (LEA) desires. (See page 14)

Aisles

All school buses equipped with a power lift shall provide a minimum 30-inch aisle leading from wheelchair position to at least one emergency door and the lift area.

Communications

All special needs school buses shall be equipped with an electronic two-way voice communication device. The system shall be provided by LEA or manufacturer.

Crash Barriers

1. Crash barrier shall be placed between the lift and any seat position (bench seat or wheelchair position). Stanchions are not acceptable.

2. There shall be a padded crash barrier approximately 8 inches in front of the forward edge of the seat cushion of all passenger seats that do not have another seat approximately 27 inches in front of them. There shall be a padded crash barrier or seat in front of any wheelchair position unless it is contiguous with and behind another wheelchair position. The forward-most barrier on both sides of the bus shall have a full-width, aluminized courtesy panel extending to the floor.

Glazing

Tinted glazing may be installed in all doors, windows and windshield consistent with federal, state, and local regulations.

Identification

Buses with power lifts used for transporting physically handicapped students shall display three universal handicapped symbols located below the windowpane. Such emblems shall be white on blue background, shall not exceed 12 inches in size, and shall be of a high-intensity reflectorized material meeting U. S. Department of Transportation FHWA FP-85 Standards. Symbols shall be located on the lift door, the rear of the bus and the front bumper.
Passenger Capacity Rating

In determining the passenger capacity of a school bus for purposes other than actual passenger load (i.e., vehicle classification, or various billing/reimbursement models), any location in a school bus intended for securing an occupied wheelchair/mobility aid during vehicle operations may be regarded as four designated seating positions. Similarly, each lift area may be regarded as four designated seating positions.

Power Lift

1. The option shall be provided to the local purchaser to have the lift located either in front of or behind the rear wheels, on the right side of the bus, but confined within the bus body when not extended.

2. All lifts shall be fully automatic with sufficient clearances to permit a wheelchair or other mobility user to reach a securement location.

3. The design load of the lift shall be at least 600 pounds. Working parts, such as cables, pulleys, and shafts, which can be expected to wear, and upon which the lift depends for support of the load, shall have a safety factor of at least 6 (six), based on the ultimate strength of the material. Non-working parts, such as the platform, frame, and attachment hardware, which would not be expected to wear, shall have a safety factor of at least 3 (three), based on the ultimate strength of the material.

4. The lifting mechanism and platform shall be able to lift a minimum of 800 pounds.

5. Controls shall be provided that enable the operator to activate the lift mechanism from either inside or outside the bus. The controls may be interlocked with the vehicle brakes, transmission, or door, or may provide other appropriate mechanisms or systems to ensure the vehicle cannot be moved when the lift is not stowed and so the lift cannot be deployed unless the interlocks or systems are engaged. The lift shall deploy to all levels (i.e., ground, curb, and intermediate positions) normally encountered in the operating environment. Where provided, each control for deploying, lowering, raising, and stowing the lift and lowering the roll-off barrier shall be of a momentary contact type requiring continuous manual pressure by the operator and shall not allow improper lift sequencing when the lift platform is occupied. The controls shall allow reversal of the lift operation sequence, such as raising or lowering a platform that is part way down, without allowing an occupied platform to fold or retract into the stowed position.

6. The lift shall incorporate an emergency method of deploying, lowering to ground level with a lift occupant, and raising and stowing the empty lift if the power to the lift fails. No emergency method, manual or otherwise, shall be capable of being operated in a manner that could be hazardous to the lift occupant or to the operator when operated according to manufacturer’s instructions and shall not permit the platform to be stowed or folded when occupied. No manual emergency operation
shall require more than 2 (two) minutes to lower an occupied wheelchair to ground level.

7. Platforms stowed in a vertical position, and deployed platforms when occupied, shall have provisions to prevent their deploying, falling, or folding any faster than 12 inches per second or their dropping of an occupant in the event of a single failure of any load carrying component.

8. The lift platform shall be equipped with barriers to prevent any of the wheels of a wheelchair or mobility aid from rolling off the platform during its operation. A movable barrier or inherent design feature shall prevent a wheelchair or mobility aid from rolling off the edge closest to the vehicle until the platform is in its fully raised position. Each side of the lift platform, which extends beyond the vehicle in its raised position, shall have a barrier a minimum 1 and 1/2 inches high. Such barriers shall not interfere with maneuvering into or out of the aisle. The loading-edge barrier (outer barrier), which functions as a loading ramp when the lift is at ground level, shall be sufficient when raised or closed, or a supplementary system shall be provided, to prevent a power wheelchair or mobility aid from riding over or defeating it. The outer barrier of the lift shall automatically raise or close, or a supplementary system shall automatically engage, and remain raised, closed, or engaged at all times that the platform is more than 3 inches above the roadway or sidewalk and the platform is occupied. Alternatively, a barrier or system may be raised, lowered, opened, closed, engaged, or disengaged by the lift operator, provided an interlock or inherent design feature prevents the lift from rising unless the barrier is raised or closed or the supplementary system is engaged.

9. The platform surface shall be free of any protrusions over 1/4 inch high and shall be slip resistant. The platform shall have a minimum clear width of 28 and 1/2 inches at the platform, a minimum clear width of 30 inches measured from 2 inches above the platform surface to 30 inches above the surface of the platform, and a minimum clear length of 48 inches measured from 2 inches above the surface of the platform to 30 inches above the surface of the platform.

10. Any openings between the platform surface and the raised barriers shall not exceed 5/8 inches in width. When the platform is at vehicle floor height with the inner barrier (if applicable) down or retracted, gaps between the forward lift platform edge and the vehicle floor shall not exceed 1/2 inches horizontally and 5/8 inches vertically.

11. The outboard entrance ramp or loading-edge barrier used as a ramp and the transition plate from the inboard edge of the platform to the vehicle floor shall not exceed a slope of 1:8, measured on level ground, for a maximum rise of three inches, and the transition from roadway or sidewalk to ramp may be vertical without edge treatment up to 1/4 inches.
Thresholds between 1/4 inch and 1/2 inch high shall be beveled with a slope no greater than 1:2.

12. The lift platform (not including the entrance ramp) shall not deflect more than three degrees (exclusive of vehicle roll or pitch) in any direction between its unloaded position and its position when loaded with 60 pounds applied through a 26” by 26” test pallet at the centroid of the platform.

13. No part of the platform shall move at a rate exceeding 6 inches per second during lowering and lifting an occupant, and shall not exceed 12 inches per second during deploying or stowing. This requirement does not apply to the deployment or stowage cycles of lifts that are manually deployed or stowed. The maximum platform horizontal and vertical acceleration when occupied shall be 0.3 g.

14. The lift shall permit both inboard and outboard facing of wheelchair and mobility aid users.

15. Lifts shall accommodate persons using walkers, crutches, canes or braces, or who otherwise have difficulty using steps. The platform may be marked to indicate a preferred standing position.

16. Platforms on lifts shall be equipped with handrails on two sides, which move in tandem with the lift, and which shall be graspable and provide support to standees throughout the entire lift operation. Handrails shall have a usable component at least 8 inches long with the lowest portion a minimum 30 inches above the platform and the highest portion a maximum 38 inches above the platform. The handrails shall be capable of withstanding a force of 100 pounds concentrated at any point on the handrail without permanent deformation of the rail or its supporting structure. The handrails shall have a cross-sectional diameter between 1 and 1/4 inches and 1 and 1/2 inches or shall provide an equivalent grasping surface, and have eased edges with corner radii of not less than 1/8 inch. Handrails shall be placed to provide a minimum 1 and 1/2” knuckle clearance from the nearest adjacent surface. Handrails shall not interfere with wheelchair or mobility aid maneuverability when entering or leaving the vehicle.

17. A re-settable circuit breaker shall be installed between the power source and the lift motor if electrical power is used. It shall be located as close to the power source as possible, but not within the passenger/driver compartment.

18. Lift design shall prevent excessive pressure that could damage the lift system when the platform is fully lowered or raised, or that could jack the vehicle.

19. The following information shall be provided with each vehicle equipped with a lift:
A. A phone number where information can be obtained about installation, repair, and parts. (Detailed written instructions and a parts list shall be available upon request.)

B. Detailed instructions regarding use of the lift and readily visible when the lift door is open, including a diagram showing the proper placement and positioning of wheelchair/mobility aids on lift.

20. The lift manufacturer shall make available training materials to ensure the proper use and maintenance of the lift. These may include instructional videos, classroom curriculum, system test results, or other related materials.

21. Each lift shall be permanently and legibly marked or incorporate a non-removable label or tag which states that it conforms to all applicable requirements of the current National Standards for School Buses. In addition, the lift manufacturer, or an authorized representative, upon request of the original titled purchaser, shall provide a Notarized Certificate of Conformance, either original or photocopied, which states that the lift system meets all the applicable requirements of the current National Standards for School Buses.

Ramp

Emergency ramps may be used with prior approval from the SDE.

Regular Service Entrance

1. Steps

 A. The first step at the service door shall be not less than 10 inches and not more than 14 inches from the ground when measured from the bottom of the step based on standard chassis specifications.

 (1) A Type D vehicle shall have the first step at the service door 12 to 16 inches from the ground.

2. The service door entrance shall use a three-step step well. Risers shall be of equal height and depth. When a plywood floor is used on steel, the differential may be increased by thickness of plywood.

3. Steps shall be enclosed to prevent accumulation of ice and snow.

4. Steps shall not protrude beyond the side bodyline.

5. A grab handle not less than 20 inches in length shall be provided in an unobstructed location inside the doorway.
Restraining Devices

1. On power-lift equipped vehicles, seat frames may be equipped with attachments or devices to which belts, restraining harnesses or other devices may be attached. Attachment framework or anchorage devices, if installed, shall conform to FMVSS 210.

2. Seat belt assemblies may be installed on special needs buses, and shall conform to FMVSS 209. Seat belt assemblies shall be color-coded, installed by the manufacturer, and must conform to FMVSS 209.

3. Child restraint systems, which are used to facilitate the transportation of children who in other modes of transportation would be required to use a child, infant, or booster seat, shall conform to FMVSS 213 and 222.

Seating Arrangements

Flexibility in seat spacing to accommodate special circumstances shall be permitted to meet passenger requirements. All seating shall be forward facing.

Securement and Restraint System for Wheelchair/Mobility Aid and Occupant

For purposes of better understanding the various aspects and components of this section, the term securement or phrase securement system is used exclusively in reference to the device(s), which secure the wheelchair/mobility aid. The term restraint or phrase restraint system is used exclusively in reference to the device(s) used to restrain the occupant of the wheelchair/mobility aid. The phrase securement and restraint system is used to refer to the total system, which secures and restrains both the wheelchair/mobility aid and the occupant.

1. Securement and restraint system--general

A. The Wheelchair/Mobility Aid Securement and Occupant Restraint System shall be designed, installed, and operated to accommodate passengers in a forward-facing orientation within the bus and shall comply with all applicable requirements of FMVSS 222. Gurney-type devices shall be secured parallel to the side of each bus.

B. The securement and restraint system, including the system track, floor plates, pockets, or other anchorages shall be provided by the same manufacturer, or be certified to be compatible by manufacturers of all equipment/systems used.

C. When a wheelchair/mobility aid securement device and an occupant restraint share a common anchorage, including occupant restraint designs that attach the occupant restraint to the securement device or the wheelchair/mobility aid, the anchorage shall be capable of withstanding the loads of both the securement
device and occupant restraint applied simultaneously, in accordance with FMVSS 222 (see Sections 2 and 3 of this section).

D. When a wheelchair/mobility aid securement device (webbing or strap assembly) is shared with an occupant restraint, the wheelchair/mobility aid securement device (webbing or strap assembly) shall be capable of withstanding a force twice the amount as specified in Section 4.4(a) of FMVSS 209 (see Sections 2 and 3 of this section).

E. The bus body floor and sidewall structures where the securement and restraint system anchorages are attached shall have equal or greater strength than the load requirements of the system(s) being installed.

F. The occupant restraint system shall be designed to be attached to the bus body either directly or in combination with the wheelchair/mobility aid securement system, by a method, which prohibits the transfer of weight or force from the wheelchair/mobility aid to the occupant in the event of an impact.

G. When an occupied wheelchair/mobility aid is secured in accordance with the manufacturer’s instructions, the securement and restraint system shall limit the movement of the occupied wheelchair/mobility aid to no more than 2 inches in any direction under normal driving conditions.

H. The securement and restraint system shall incorporate an identification scheme, which will allow for the easy identification of the various components and their functions. It shall consist of one of the following, or combination thereof:

(1) The wheelchair/mobility aid securement (webbing or strap assemblies) and the occupant restraint belt assemblies shall be of contrasting color or color shade.

(2) The wheelchair/mobility aid securement device (webbing or strap assemblies) and occupant restraint belt assemblies shall be clearly marked to indicate the proper wheelchair orientation in the vehicle, and the name and location for each device or belt assembly; i.e., front, rear, lap belt, shoulder belt.

I. All attachment or coupling devices designed to be connected or disconnected frequently shall be accessible and operable without the use of tools or other mechanical assistance.

J. The securement and restraint system hardware and components shall be free of sharp or jagged areas and shall be of a non-corrosive material or treated to resist corrosion in accordance with Section 4.3(a) of FMVSS 209.
K. The securement and restraint system shall be located and installed such that when an occupied wheelchair/mobility aid is secured, it does not block access to the lift door or emergency door.

L. A device for storage of the securement and restraint system may be provided. When the system is not in use, the storage device shall allow for clean storage of the system, shall keep the system securely contained within the passenger compartment, shall provide reasonable protection from vandalism, and shall enable the system to be readily accessed for use.

M. The entire securement and restraint system, including the storage device, shall meet the flammability standards established in FMVSS 302.

N. Each securement device (webbing or strap assembly) and restraint belt assembly shall be permanently and legibly marked or incorporate a non-removable label or tag which states that it conforms to all applicable FMVSS requirements. In addition, the system manufacturer, or an authorized representative, upon request by the original titled purchaser, shall provide a notarized Certificate of Conformance, either original or photocopied, which states that the wheelchair/mobility aid securement and occupant restraint system meets all of the requirements as specified in FMVSS 222.

O. The following information shall be provided with each vehicle equipped with a securement and restraint system:

1. A phone number where information can be obtained about installation, repair, and parts. (Detailed written instructions and a parts list shall be available upon request.)

2. Detailed instructions regarding use, including a diagram showing the proper placement of the wheelchair/mobility aids and positioning of securement devices and occupant restraints, including correct belt angles.

P. The system manufacturer shall make available training materials to ensure the proper use and maintenance of the wheelchair/mobility aid securement and occupant restraint system. These may include instructional videos, classroom curriculum, system test results, or other related materials.

2. Wheelchair/mobility aid securement system

A. Each securement system location shall consist of a minimum of four anchorage points. A minimum of two anchorage points shall be located in front of the wheelchair/mobility aid and a minimum of two anchorage points shall be located in the rear. The securement anchorages shall be attached to the floor of the vehicle and shall not interfere with passenger movement or present any hazardous condition.
B. Each securement system location shall have a minimum clear floor area of 30” x 48”. Additional floor area may be required for some applications. Consultation between the user and the manufacturer is recommended to ensure adequate area is provided.

C. The securement system shall secure common wheelchair/mobility aids and shall be able to be attached easily by a person having average dexterity and who is familiar with the system and wheelchair/mobility aid.

D. As installed, each securement anchorage shall be capable of withstanding a minimum force of 3,000 pounds (13,344 Newtons) when applied as specified in FMVSS 222. When more than one securement device share a common anchorage, the anchorage shall be capable of withstanding the force indicated above, multiplied by the number of securement devices sharing that anchorage.

E. Each securement device, if incorporating webbing or a strap assembly, shall comply with the requirements for Type 1 safety belt systems, in accordance with Sections 4.2, 4.3, and 4.4(a) of FMVSS 209.

F. The securement system shall secure the wheelchair/mobility aid in such a manner that the attachments or coupling hardware will not become detached when any wheelchair/mobility aid component deforms, when one or more tires deflate, and without intentional operation of a release mechanism (e.g., a spring clip on a securement hook).

G. Each securement device (webbing or strap assembly) shall be capable of withstanding a minimum force of 2,500 pounds when tested in accordance with FMVSS 209.

H. Each securement device (webbing or strap assembly) shall provide a means of adjustment, of manufacturer’s design, to remove slack from the device or assembly.

3. Occupant restraint system

A. A Type II-A occupant restraint system, which meets all applicable requirements of FMVSS 209 and 210, shall provide for restraint of the occupant.

B. The occupant restraint system shall be made of materials, which do not stain, soil, or tear an occupant’s clothing, and which are resistant to water damage and fraying.

C. Each restraint system location shall have not less than one anchorage, of manufacturer’s design, for the upper end of the upper torso restraint.
(1) The anchorage for each occupant’s upper torso restraint shall be capable of withstanding a minimum force of 1,500 pounds (6,672 Newtons) when applied as specified in FMVSS 222.

D. Each wheelchair/mobility aid location shall have not less than two floor anchorages for the occupant pelvic and the connected upper torso restraint.

(1) Each floor anchorage shall be capable of withstanding a minimum force of 3,000 pounds (13,344 Newtons) when applied as specified in FMVSS 222.

(2) When more than one occupant restraint share a common anchorage, the anchorage shall be capable of withstanding a minimum force of 3,000 pounds (13,344 Newtons) multiplied by the number of occupant restraints sharing the common anchorage in accordance with FMVSS 222.

E. Each floor and wall anchorage which secures the occupant restraint to the vehicle and which is not permanently attached, shall be of a “positive latch” design, and shall not allow for any accidental disconnection.

Special Light

Doorways in which lifts are installed shall have, when lift is to be used, at least 2 foot-candles of illumination measured on the floor of the bus immediately adjacent to the lift, and on the lift, when deployed at the vehicle floor level. Any lighting used during lift operations shall remain lit whenever door is open.

Special Service Entrance

1. Power lift equipped bodies shall have a special service entrance to accommodate the power lift.

2. The special service entrance and door shall be located on the right side of the bus and shall be designed so as not to obstruct the regular service entrance.

3. The opening may extend below the floor through the bottom of the body skirt. If such an opening is used, reinforcements shall be installed at the front and rear of the floor opening to support the floor and give the same strength as other floor openings.

4. A drip molding shall be installed above the opening to effectively divert water from entrance.

5. Door posts and headers from entrance shall be reinforced sufficiently to provide support and strength equivalent to the areas of the side of the bus not used for special service entrance.
Special Service Entrance Doors

1. A single door or double doors may be used for the special service entrance.

2. A single door shall be hinged to the forward side of the entrance unless doing so would obstruct the regular service entrance. If, due to the above condition, the door is hinged to the rearward side of the doorway, the door shall utilize a safety mechanism, which will prevent the door from swinging, open should the primary door latch fail. If double doors are used the system shall be designed to prevent the door(s) from being blown open by the wind resistance created by the forward motion of the bus, and/or incorporate a safety mechanism to provide secondary protection should the primary latching mechanism(s) fail.

3. All doors shall have positive fastening devices to hold doors in the open position.

4. All doors shall be weather sealed on buses with double doors. They shall be so constructed that a flange on the forward door overlaps the edge of the rear door when closed.

5. When manually operated dual doors are provided, the rear door shall have at least a one-point fastening device to the header. The forward-mounted door shall have at least three-point fastening devices. One shall be to the header, one to the floor line of the body, and the other shall be into the rear door. The door and hinge mechanism shall be of a strength that is greater than or equivalent to the emergency exit door.

6. Door materials, panels and structural strength shall be equivalent to the conventional service and emergency doors. Color, rub rail extensions, lettering and other exterior features shall match adjacent sections of the body.

7. Each door shall have windows set in rubber, which are visually similar in size and location to adjacent non-door windows. Glazing shall be of same type and tinting (if applicable) as standard fixed glass in other body location.

8. Door(s) shall be equipped with a device that will actuate a flashing visible signal located in the driver’s compartment when the door(s) is open and ignition is in “on” position.

9. A switch shall be installed so that the lifting mechanism will not operate when the lift platform door(s) is closed.

10. Special service entrance doors shall be equipped with padding at the top edge of the door opening. Pad shall be at least three inches wide and one inch thick and extend the full width of the door opening.
Support Equipment and Accessories

1. Each bus which is set up to accommodate wheelchair/mobility aids or other assistive or restraint devices which utilize belts, shall contain at least one belt cutter properly secured in a location within reach of the driver while belted into his/her driver’s seat. The belt cutter shall be durable and designed to eliminate the possibility of the operator or others being cut during use.

2. Special equipment or supplies which are used on the bus for mobility assistance, health support, or safety purposes shall meet any local, federal, or engineering standards which may apply, including proper identification.

 Equipment which may be used for these purposes includes, but is not limited to:

 A. Wheelchairs and other mobile seating devices (see section on Securement System for Mobile Seating Devices/Occupant).

 B. Crutches, walkers, canes, and other ambulating devices.

 C. Medical support equipment. This may include respiratory devices such as oxygen bottles (which should be no larger than 22 cubic feet for liquid oxygen and 38 cubic feet for compressed gas), or ventilators. Tanks and valves should be located and positioned to protect them from direct sunlight, bus heater vents, or other heat sources. Other equipment may include intravenous, and fluid drainage apparatus. Appropriate medical placarding if needed shall be added by the LEA.

3. All portable equipment and special accessory items, including the equipment listed above, shall be secured at the mounting location to withstand a pulling force of five times the weight of the item, or shall be retained in an enclosed, latched compartment. The compartment shall be capable of withstanding forces applied to its interior equal to five times the weight of its contents without failure to the box’s integrity and securement to the bus. Exception: If these standards provide specific requirements for securement of a particular type of equipment, the specific standard shall prevail (i.e., wheelchairs).
SECTION V - ALTERNATE FUEL SOURCE STANDARDS

1. The guidelines contained herein shall pertain only to the school buses approved by the Alabama State Board of Education to operate on alternative fuel sources and which meet the safe operation requirements of paragraph B-1.

 A. Any company or individual servicing conversion equipment to school districts shall provide an approved certification program covering installation, personnel training, maintenance, repair, trouble-shooting and safety procedures for each responsible mechanic to assure that conversion and maintenance is performed only by personnel certified by the Alabama LP-Gas Board or other approved agency.

 B. These companies or individuals shall submit to the Alabama State Department of Education, Pupil Transportation Section, Montgomery, Alabama, 36130, documentation certifying that the requirements of 1-A have been met.

SECTION VI - OPTIONS

Lock Gas Compartment Door

Provide at the option of the purchaser a lock and key to secure the gas compartment door.

Storage Compartment for Required Emergency Equipment

Provide at the option of the purchaser a storage compartment located in the driver’s compartment to house the emergency equipment. It shall be a locked compartment with a warning buzzer attached so as to activate when the ignition switch is on and the compartment is locked.

Special Needs Bus, Evacuation Blanket

Provide at the option of the purchaser an evacuation blanket and storage pouch mounted securely to sidewall of bus. The location of the evacuation blanket to be determined by purchaser at time of bid.

Engine Fire Suppression System

Provide at the option of the purchaser an engine fire suppression system for either special needs or regular route buses. System shall be a JOMAR, vehicle fire suppression system or approved equal.